FUNDAMENTALS OF DATA MINING IN GENOMICS AND PROTEOMICS

FUNDAMENTALS OF DATA MINING IN GENOMICS AND PROTEOMICS

Edited by Werner Dubitzky University of Ulster, Coleraine, Northern Ireland

Martin Granzow Quantiom Bioinformatics GmbH & Co. KG, Weingarten/Baden, Germany

> **Daniel Berrar** University of Ulster, Coleraine, Northern Ireland

Library of Congress Control Number: 2006934109

ISBN-13: 978-0-387-47508-0 ISBN-10: 0-387-47508-7 e-ISBN-13: 978-0-387-47509-7 e-ISBN-10: 0-387-47509-5

Printed on acid-free paper.

© 2007 Springer Science+Business Media, LLC

All rights reserved. This work may not be translated or copied in whole or in part without the written permission of the publisher (Springer Science+Business Media, LLC, 233 Spring Street, New York, NY 10013, USA), except for brief excerpts in connection with reviews or scholarly analysis. Use in connection with any form of information storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now known or hereafter developed is forbidden.

The use in this publication of trade names, trademarks, service marks and similar terms, even if they are not identified as such, is not to be taken as an expression of opinion as to whether or not they are subject to proprietary rights.

987654321

springer.com

Preface

As natural phenomena are being probed and mapped in ever-greater detail, scientists in genomics and proteomics are facing an exponentially growing volume of increasingly complex-structured data, information, and knowledge. Examples include data from microarray gene expression experiments, bead-based and microfluidic technologies, and advanced high-throughput mass spectrometry. A fundamental challenge for life scientists is to explore, analyze, and interpret this information effectively and efficiently. To address this challenge, traditional statistical methods are being complemented by methods from data mining, machine learning and artificial intelligence, visualization techniques, and emerging technologies such as Web services and grid computing.

There exists a broad consensus that sophisticated methods and tools from statistics and data mining are required to address the growing data analysis and interpretation needs in the life sciences. However, there is also a great deal of confusion about the arsenal of available techniques and how these should be used to solve concrete analysis problems. Partly this confusion is due to a lack of mutual understanding caused by the different concepts, languages, methodologies, and practices prevailing within the different disciplines.

A typical scenario from pharmaceutical research should illustrate some of the issues. A molecular biologist conducts nearly one hundred experiments examining the toxic effect of certain compounds on cultured cells using a microarray gene expression platform. The experiments include different compounds and doses and involves nearly 20 000 genes. After the experiments are completed, the biologist presents the data to the bioinformatics department and briefly explains what kind of questions the data is supposed to answer. Two days later the biologist receives the results which describe the output of a cluster analysis separating the genes into groups of activity and dose. While the groups seem to show interesting relationships, they do not directly address the questions the biologist has in mind. Also, the data sheet accompanying the results shows the original data but in a different order and somehow transformed. Discussing this with the bioinformatician again it turns out that what the biologist wanted was not clustering (*automatic* classification or *automatic* class prediction) but *supervised* classification or *supervised* class prediction.

One main reason for this confusion and lack of mutual understanding is the absence of a conceptual platform that is common to and shared by the two broad disciplines, life science and data analysis. Another reason is that data mining in the life sciences is different to that in other typical data mining applications (such as finance, retail, and marketing) because many requirements are fundamentally different. Some of the more prominent differences are highlighted below.

A common theme in many genomic and proteomic investigations is the need for a detailed understanding (descriptive, predictive, explanatory) of genome- and proteome-related entities, processes, systems, and mechanisms. A vast body of knowledge describing these entities has been accumulated on a staggering range of life phenomena. Most conventional data mining applications do not have the requirement of such a deep understanding and there is nothing that compares to the global knowledge base in the life sciences.

A great deal of the data generated in genomics and proteomics is generated in order to analyze and interpret them in the context of the questions and hypotheses to be answered and tested. In many classical data mining scenarios, the data to be analyzed are generated as a "by-product" of an underlying business process (e.g., customer relationship management, financial transactions, process control, Web access log, etc.). Hence, in the conventional scenario there is no notion of question or hypothesis at the point of data generation.

Depending on what phenomenon is being studied and the methodology and technology used to generate data, genomic and proteomic data structures and volumes vary considerably. They include temporally and spatially resolved data (e.g., from various imaging instruments), data from spectral analysis, encodings for the sequential and spatial representation of biological macromolecules and smaller chemical and biochemical compounds, graph structures, and natural language text, etc. In comparison, data structures encountered in typical data mining applications are simple.

Because of ethical constraints and the costs and time involved to run experiments, most studies in genomics and proteomics create a modest number of observation points ranging from several dozen to several hundreds. The number of observation points in classical data mining applications ranges from thousands to millions. On the other hand, modern high-throughput experiments measure several thousand variables per observation, much more than encountered in conventional data mining scenarios.

By definition, research and development in genomics and proteomics is subject to constant change – new questions are being asked, new phenomena are being probed, and new instruments are being developed. This leads to frequently changing data processing pipelines and workflows. Business processes in classical data mining areas are much more stable. Because solutions will be in use for a long time, the development of complex, comprehensive, and expensive data mining applications (such as data warehouses) is readily justified.

Genomics and proteomics are intrinsically "global" – in the sense that hundreds if not thousands of databases, knowledge bases, computer programs, and document libraries are available via the Internet and are used by researchers and developers throughout the world as part of their day-to-day work. The information accessible through these sources form an intrinsic part of the data analysis and interpretation process. No comparable infrastructure exists in conventional data mining scenarios.

This volume presents state of the art analytical methods to address key analysis tasks that data from genomics and proteomics involve. Most importantly, the book will put particular emphasis on the common caveats and pitfalls of the methods by addressing the following questions: What are the requirements for a particular method? How are the methods deployed and used? When should a method not be used? What can go wrong? How can the results be interpreted? The main objectives of the book include:

- To be acceptable and accessible to researchers and developers both in life science and computer science disciplines it is therefore necessary to express the methodology in a language that practitioners in both disciplines understand;
- To incorporate fundamental concepts from both conventional statistics as well as the more exploratory, algorithmic and computational methods provided by data mining;
- To take into account the fact that data analysis in genomics and proteomics is carried out against the backdrop of a huge body of existing formal knowledge about life phenomena and biological systems;
- To consider recent developments in genomics and proteomics such as the need to view biological entities and processes as systems rather than collections of isolated parts;
- To address the current trend in genomics and proteomics towards increasing computerization, for example, computer-based modeling and simulation of biological systems and the data analysis issues arising from largescale simulations;
- To demonstrate where and how the respective methods have been successfully employed and to provide guidelines on how to deploy and use them;
- To discuss the advantages and disadvantages of the presented methods, thus allowing the user to make an informed decision in identifying and choosing the appropriate method and tool;
- To demonstrate potential caveats and pitfalls of the methods so as to prevent any inappropriate use;
- To provide a section describing the formal aspects of the discussed methodologies and methods;

viii Preface

- To provide an exhaustive list of references the reader can follow up to obtain detailed information on the approaches presented in the book;
- To provide a list of freely and commercially available software tools.

It is hoped that this volume will (i) foster the understanding and use of powerful statistical and data mining methods and tools in life science as well as computer science and (ii) promote the standardization of data analysis and interpretation in genomics and proteomics.

The approach taken in this book is conceptual and practical in nature. This means that the presented data-analytical methodologies and methods are described in a largely non-mathematical way, emphasizing an informationprocessing perspective (input, output, parameters, processing, interpretation) and conceptual descriptions in terms of mechanisms, components, and properties. In doing so, the reader is not required to possess detailed knowledge of advanced theory and mathematics. Importantly, the merits and limitations of the presented methodologies and methods are discussed in the context of "real-world" data from genomics and proteomics. Alternative techniques are mentioned where appropriate. Detailed guidelines are provided to help practitioners avoid common caveats and pitfalls, e.g., with respect to specific parameter settings, sampling strategies for classification tasks, and interpretation of results. For completeness reasons, a short section outlining mathematical details accompanies a chapter if appropriate. Each chapter provides a rich reference list to more exhaustive technical and mathematical literature about the respective methods.

Our goal in developing this book is to address complex issues arising from data analysis and interpretation tasks in genomics and proteomics by providing what is simultaneously a *design blueprint*, *user guide*, and *research agenda* for current and future developments in the field.

As design blueprint, the book is intended for the practicing professional (researcher, developer) tasked with the analysis and interpretation of data generated by high-throughput technologies in genomics and proteomics, e.g., in pharmaceutical and biotech companies, and academic institutes.

As a user guide, the book seeks to address the requirements of scientists and researchers to gain a basic understanding of existing concepts and methods for analyzing and interpreting high-throughput genomics and proteomics data. To assist such users, the key concepts and assumptions of the various techniques, their conceptual and computational merits and limitations are explained, and guidelines for choosing the methods and tools most appropriate to the analytical tasks are given. Instead of presenting a complete and intricate mathematical treatment of the presented analysis methodologies, our aim is to provide the users with a clear understanding and practical know-how of the relevant concepts and methods so that they are able to make informed and effective choices for data preparation, parameter setting, output postprocessing, and result interpretation and validation. As a research agenda, this volume is intended for students, teachers, researchers, and research managers who want to understand the state of the art of the presented methods and the areas in which gaps in our knowledge demand further research and development. To this end, our aim is to maintain the readability and accessibility throughout the chapters, rather than compiling a mere reference manual. Therefore, considerable effort is made to ensure that the presented material is supplemented by rich literature cross-references to more foundational work.

In a quarter-length course, one lecture can be devoted to two chapters, and a project may be assigned based on one of the topics or techniques discussed in a chapter. In a semester-length course, some topics can be covered in greater depth, covering – perhaps with the aid of an in-depth statistics/data mining text – more of the formal background of the discussed methodology. Throughout the book concrete suggestions for further reading are provided.

Clearly, we cannot expect to do justice to all three goals in a single book. However, we do believe that this book has the potential to go a long way in bridging a considerable gap that currently exists between scientists in the field of genomics and proteomics on one the hand and computer scientists on the other hand. Thus, we hope, this volume will contribute to increased communication and collaboration across the disciplines and will help facilitate a consistent approach to analysis and interpretation problems in genomics and proteomics in the future.

This volume comprises 12 chapters, which follow a similar structure in terms of the main sections. The centerpiece of each chapter represents a case study that demonstrates the use - and misuse - of the presented method or approach. The first chapter provides a general introduction to the field of data mining in genomics and proteomics. The remaining chapters are intended to shed more light on specific methods or approaches.

The second chapter focuses on study design principles and discusses replication, blocking, and randomization. While these principles are presented in the context of microarray experiments, they are applicable to many types of experiments.

Chapter 3 addresses data pre-processing in cDNA and oligonucleotide microarrays. The methods discussed include background intensity correction, data normalization and transformation, how to make gene expression levels comparable across different arrays, and others.

Chapter 4 is also concerned with pre-processing. However, the focus is placed on high-throughput mass spectrometry data. Key topics include baseline correction, intensity normalization, signal denoising (e.g., via wavelets), peak extraction, and spectra alignment.

Data visualization plays an important role in exploratory data analysis. Generally, it is a good idea to look at the distribution of the data prior to analysis. Chapter 5 revolves around visualization techniques for highdimensional data sets, and puts emphasis on multi-dimensional scaling. This technique is illustrated on mass spectrometry data.

x Preface

Chapter 6 presents the state of the art of clustering techniques for discovering groups in high-dimensional data. The methods covered include hierarchical and k-means clustering, self-organizing maps, self-organizing tree algorithms, model-based clustering, and cluster validation strategies, such as functional interpretation of clustering results in the context of microarray data.

Chapter 7 addresses the important topics of feature selection, feature weighting, and dimension reduction for high-dimensional data sets in genomics and proteomics. This chapter also includes statistical tests (parametric or non-parametric) for assessing the significance of selected features, for example, based on random permutation testing.

Since data sets in genomics and proteomics are usually relatively small with respect to the number of samples, predictive models are frequently tested based on resampled data subsets. Chapter 8 reviews some common data resampling strategies, including *n*-fold cross-validation, leave-one-out crossvalidation, and repeated hold-out method.

Chapter 9 discusses support vector machines for classification tasks, and illustrates their use in the context of mass spectrometry data.

Chapter 10 presents graphs and networks in genomics and proteomics, such as biological networks, pathways, topologies, interaction patterns, gene-gene interactome, and others.

Chapter 11 concentrates on time series analysis in genomics. A methodology for identifying important predictors of time-varying outcomes is presented. The methodology is illustrated in a study aimed at finding mutations of the human immunodeficiency virus that are important predictors of how well a patient responds to a drug regimen containing two different antiretroviral drugs.

Automated extraction of information from biological literature promises to play an increasingly important role in text-based knowledge discovery processes. This is particularly important for high-throughput approaches such as microarrays and high-throughput proteomics. Chapter 12 addresses knowledge extraction via text mining and natural language processing.

Finally, we would like to acknowledge the excellent contributions of the authors and Alice McQuillan for her help in proofreading.

Coleraine, Northern Ireland, and Weingarten, Germany

Werner Dubitzky Martin Granzow Daniel Berrar The following list shows the symbols or abbreviations for the most commonly occurring quantities/terms in the book. In general, uppercase boldfaced letters such as \mathbf{X} refer to matrices. Vectors are denoted by lowercase boldfaced letters, e.g., \mathbf{x} , while scalars are denoted by lowercase italic letters, e.g., x.

List of Abbreviations and Symbols

ACE	Average (test) classification error
ANOVA	Analysis of variance
ARD	Automatic relevance determination
AUC	Area under the curve (in ROC analysis)
BACC	Balanced accuracy (average of sensitivity and specificity)
BACC	Balanced accuracy
bp	Base pair
CART	Classification and regression tree
\mathbf{CV}	Cross-validation
Da	Daltons
\mathbf{DDWT}	Decimated discrete wavelet transform
\mathbf{ESI}	Electrospray ionization
\mathbf{EST}	Expressed sequence tag
\mathbf{ETA}	Experimental treatment assignment
\mathbf{FDR}	False discovery rate
\mathbf{FLD}	Fisher's linear discriminant
\mathbf{FN}	False negative
\mathbf{FP}	False positive
\mathbf{FPR}	False positive rate
FWER	Family-wise error rate
GEO	Gene Expression Omnibus
GO	Gene Ontology
ICA	Independent component analysis
IE	Information extraction
IQR	Interquartile range
\mathbf{IR}	Information retrieval
LOOCV	Leave-one-out cross-validation
MALDI	Matrix-assisted laser desorption/ionization
MDS	Multidimensional scaling
MeSH	Medical Subject Headings
MM	Mismatch
\mathbf{MS}	Mass spectrometry
m/z	Mass-over-charge
\mathbf{NLP}	Natural language processing
\mathbf{NPV}	Negative predictive value
PCA	Principal component analysis
PCR	polymerase chain reaction

xii	Preface
PCR	Polymerase chain reaction
PLS	Partial least squares
PM	Perfect match
PPV	Positive predictive value
RLE	Relative log expression
RLR	Regularized logistic regression
RMA	Robust multi-chip analysis
S2N	Signal-to-noise
SAGE	
SAM	Significance analysis of gene expression
SELD	
SOM	Self-organizing map
SOTA	Self-organizing tree algorithm
SSH	Suppression substractive hybridization
SVD	Singular value decomposition
SVM	Support vector machine
TIC	Total ion current
\mathbf{TN}	True negative
TOF	Time-of-flight
TP	True positive
UDW	Γ Undecimated discrete wavelet transform
VSN	Variance stabilization normalization
$\#(\cdot)$	Counts; the number of instances satisfying the condition in (\cdot)
x	The mean of all elements in \mathbf{x}
χ^2	Chi-square statistic
ε	Observed error rate
$\epsilon_{.632}$	Estimate for the classification error in the .632 bootstrap
\hat{y}_{i}	Predicted value for y_i (i.e., predicted class label for case \mathbf{x}_i)
$\neg y$	Not y
${\Sigma}$	Covariance
τ ,	True error rate
x′	Transpose of vector \mathbf{x}
D	Data set
d(x,y)	
E(X)	Expectation of a random variable X
$\langle k \rangle$	Average of k
L_i \Re	i^{th} learning set
	Set of real numbers i^{th} test set
T_i TR_{ij}	Training set of the i^{th} external and j^{th} internal loop
- 2	Validation set of the i^{th} external and j^{th} internal loop
V_{ij}	i^{th} vertex in a network
v_i	1 ACLICY III O TICIMOLY

Contents

1 Introduction to Genomic and Proteomic Data Analysis	
Daniel Berrar, Martin Granzow, and Werner Dubitzky	1
1.1 Introduction	1
1.2 A Short Overview of Wet Lab Techniques	3
	3
1.2.2 Proteomics Techniques in a Nutshell	5
	6
1.4 Study Design	7
1.5 Data Mining	8
1.5.1 Mapping Scientific Questions to Analytical Tasks	9
	.1
1.5.3 Data Pre-Processing 1	.3
1.5.3.1 Handling of Missing Values 1	.3
1.5.3.2 Data Transformations 1	.4
1.5.4 The Problem of Dimensionality 1	.5
1.5.4.1 Mapping to Lower Dimensions 1	.5
1.5.4.2 Feature Selection and Significance Analysis 1	.6
1.5.4.3 Test Statistics for Discriminatory Features 1	7
1.5.4.4 Multiple Hypotheses Testing 1	.9
1.5.4.5 Random Permutation Tests	21
1.5.5 Predictive Model Construction 2	22
1.5.5.1 Basic Measures of Performance	!4
1.5.5.2 Training, Validating, and Testing 2	25
1.5.5.3 Data Resampling Strategies 2	27
1.5.6 Statistical Significance Tests for Comparing Models 2	29
1.6 Result Post-Processing 3	31
1.6.1 Statistical Validation 3	31
1.6.2 Epistemological Validation 3	32
1.6.3 Biological Validation 3	32
1.7 Conclusions	32
References	13

2 I	Design Principles for Microarray Investigations	
Kat	thleen F. Kerr	39
2.1	Introduction	39
2.2	The "Pre-Planning" Stage	39
	2.2.1 Goal 1: Unsupervised Learning	40
	2.2.2 Goal 2: Supervised Learning	41
	2.2.3 Goal 3: Class Comparison	41
2.3	Statistical Design Principles, Applied to Microarrays	42
	2.3.1 Replication	42
	2.3.2 Blocking	43
	2.3.3 Randomization	46
2.4	Case Study	47
2.5	Conclusions	47
Ref	erences	48
οт		
	Pre-Processing DNA Microarray Data	F 1
	njamin M. Bolstad	51
3.1	Introduction	51
	3.1.1 Affymetrix GeneChips	53
	3.1.2 Two-Color Microarrays	55
3.2	Basic Concepts.	55
	3.2.1 Pre-Processing Affymetrix GeneChip Data	56
~ ~	3.2.2 Pre-Processing Two-Color Microarray Data	59
3.3	Advantages and Disadvantages	62
	3.3.1 Affymetrix GeneChip Data	62
	3.3.1.1 Advantages	62
	3.3.1.2 Disadvantages	62
	3.3.2 Two-Color Microarrays	62
	3.3.2.1 Advantages	62
	3.3.2.2 Disadvantages	63
	Caveats and Pitfalls	63
3.5	Alternatives	63
	3.5.1 Affymetrix GeneChip Data	63
	3.5.2 Two-Color Microarrays	64
3.6	Case Study	64
	3.6.1 Pre-Processing an Affymetrix GeneChip Data Set	64
	3.6.2 Pre-Processing a Two-Channel Microarray Data Set	
	Lessons Learned	73
3.8	List of Tools and Resources	74
3.9	Conclusions	74
3.10) Mathematical Details	74
	3.10.1 RMA Background Correction Equation	74
	3.10.2 Quantile Normalization	75
	3.10.3 RMA Model	75
	3.10.4 Quality Assessment Statistics	75

3.10.5 Computation of M and A Values for Two-Channel
Microarray Data
3.10.6 Print-Tip Loess Normalization
References
4 Pre-Processing Mass Spectrometry Data
Kevin R. Coombes, Keith A. Baggerly, and Jeffrey S. Morris 79
4.1 Introduction
4.2 Basic Concepts
4.3 Advantages and Disadvantages
4.4 Caveats and Pitfalls
4.5 Alternatives
4.6 Case Study: Experimental and Simulated Data Sets for Comparing
Pre-Processing Methods
4.7 Lessons Learned
4.8 List of Tools and Resources
4.9 Conclusions
References
5 Visualization in Genomics and Proteomics
Xiaochun Li and Jaroslaw Harezlak
5.1 Introduction
5.2 Basic Concepts
5.2.1 Metric Scaling
5.2.2 Nonmetric Scaling
5.3 Advantages and Disadvantages
5.4 Caveats and Pitfalls
5.5 Alternatives
5.6 Case Study: MDS on Mass Spectrometry Data
5.7 Lessons Learned
5.8 List of Tools and Resources
5.9 Conclusions
References
6 Clustering – Class Discovery in the Post-Genomic Era
Joaquín Dopazo
6.1 Introduction
6.2 Basic Concepts
6.2.1 Distance Metrics
6.2.2 Clustering Methods
6.2.2.1 Aggregative Hierarchical Clustering
6.2.2.2 k-Means
6.2.2.3 Self-Organizing Maps
6.2.2.4 Self-Organizing Tree Algorithm
6.2.2.5 Model-Based Clustering
6.2.3 Biclustering

	6.2.4 Validation Methods	131
	6.2.5 Functional Annotation	132
6.3	Advantages and Disadvantages	132
6.4	Caveats and Pitfalls	1 3 4
	6.4.1 On Distances	135
	6.4.2 On Clustering Methods	135
6.5		
	Case Study	
6.7	Lessons Learned	139
6.8	List of Tools and Resources	140
	6.8.1 General Resources	140
	6.8.1.1 Multiple Purpose Tools (Including Clustering)	140
	6.8.2 Clustering Tools	
	6.8.3 Biclustering Tools	
	6.8.4 Time Series	
	6.8.5 Public-Domain Statistical Packages and Other Tools	141
	6.8.6 Functional Analysis Tools	142
6.9	Conclusions	
Ref	ferences	143
Ge	Feature Selection and Dimensionality Reduction in momics and Proteomics los Hauskrecht, Richard Pelikan, Michal Valko, and James	
111 00		
Lar		149
	ons-Weiler	
7.1	ons-Weiler	149
7.1	ons-Weiler	149 151
7.1	ons-Weiler Introduction Basic Concepts 7.2.1 Filter Methods	149 151 151
7.1	ons-Weiler	149 151 151 151 151
7.1	ons-Weiler	149 151 151 151 151 152
7.1	ons-Weiler	149 151 151 151 151 152 153
7.1	ons-Weiler Introduction Introduction Basic Concepts 7.2.1 Filter Methods 7.2.1.1 Criteria Based on Hypothesis Testing 7.2.1.2 Permutation Tests 7.2.1.3 Choosing Features Based on the Score 7.2.1.4 Feature Set Selection and Controlling False Positives	149 151 151 151 151 152 153 153
7.1	ons-Weiler Introduction Introduction Basic Concepts 7.2.1 Filter Methods 7.2.1.1 Criteria Based on Hypothesis Testing 7.2.1.2 Permutation Tests 7.2.1.3 Choosing Features Based on the Score	149 151 151 151 152 153 153 153
7.1	ons-Weiler Introduction Basic Concepts 7.2.1 Filter Methods 7.2.1.1 Criteria Based on Hypothesis Testing 7.2.1.2 Permutation Tests 7.2.1.3 Choosing Features Based on the Score 7.2.1.4 Feature Set Selection and Controlling False Positives 7.2.1.5 Correlation Filtering	149 151 151 151 152 153 153 154 155
7.1	ons-Weiler Introduction Basic Concepts 7.2.1 Filter Methods 7.2.1.1 Criteria Based on Hypothesis Testing 7.2.1.2 Permutation Tests 7.2.1.3 Choosing Features Based on the Score 7.2.1.4 Feature Set Selection and Controlling False Positives 7.2.1.5 Correlation Filtering 7.2.2 Wrapper Methods	149 151 151 152 153 153 154 155 155
7.1	ons-Weiler Introduction Basic Concepts 7.2.1 Filter Methods 7.2.1.1 Criteria Based on Hypothesis Testing 7.2.1.2 Permutation Tests 7.2.1.3 Choosing Features Based on the Score 7.2.1.4 Feature Set Selection and Controlling False Positives 7.2.1.5 Correlation Filtering 7.2.2 Wrapper Methods 7.2.3 Embedded Methods 7.2.3.1 Regularization/Shrinkage Methods 7.2.3.2 Support Vector Machines	149 151 151 151 152 153 153 154 155 155 155 156
7.1	ons-Weiler Introduction Basic Concepts 7.2.1 Filter Methods 7.2.1.1 Criteria Based on Hypothesis Testing 7.2.1.2 Permutation Tests 7.2.1.3 Choosing Features Based on the Score 7.2.1.4 Feature Set Selection and Controlling False Positives 7.2.1.5 Correlation Filtering 7.2.2 Wrapper Methods 7.2.3 Embedded Methods 7.2.3.1 Regularization/Shrinkage Methods	149 151 151 151 152 153 153 154 155 155 155 156
7.1	ons-Weiler Introduction Basic Concepts 7.2.1 Filter Methods 7.2.1.1 Criteria Based on Hypothesis Testing 7.2.1.2 Permutation Tests 7.2.1.3 Choosing Features Based on the Score 7.2.1.4 Feature Set Selection and Controlling False Positives 7.2.1.5 Correlation Filtering 7.2.2 Wrapper Methods 7.2.3 Embedded Methods 7.2.3.1 Regularization/Shrinkage Methods 7.2.3.2 Support Vector Machines	149 151 151 151 152 153 153 155 155 155 156 156
7.1	ons-Weiler Introduction Basic Concepts 7.2.1 Filter Methods 7.2.1.1 Criteria Based on Hypothesis Testing 7.2.1.2 Permutation Tests 7.2.1.3 Choosing Features Based on the Score 7.2.1.4 Feature Set Selection and Controlling False Positives 7.2.1.5 Correlation Filtering 7.2.2 Wrapper Methods 7.2.3 Embedded Methods 7.2.3.1 Regularization/Shrinkage Methods 7.2.3.2 Support Vector Machines 7.2.4 Feature Construction	149 151 151 152 153 153 155 155 155 156 156 156
7.1	ons-Weiler Introduction Basic Concepts 7.2.1 Filter Methods 7.2.1.1 Criteria Based on Hypothesis Testing 7.2.1.2 Permutation Tests 7.2.1.3 Choosing Features Based on the Score 7.2.1.4 Feature Set Selection and Controlling False Positives 7.2.1.5 Correlation Filtering 7.2.3 Embedded Methods 7.2.3.1 Regularization/Shrinkage Methods 7.2.3.2 Support Vector Machines 7.2.4.1 Clustering 7.2.4.2 Clustering Algorithms 7.2.4.3 Probabilistic (Soft) Clustering	149 151 151 151 152 153 153 155 155 156 156 156 158 158 158
7.1	ons-Weiler Introduction Basic Concepts 7.2.1 Filter Methods 7.2.1.1 Criteria Based on Hypothesis Testing 7.2.1.2 Permutation Tests 7.2.1.3 Choosing Features Based on the Score 7.2.1.4 Feature Set Selection and Controlling False Positives 7.2.1.5 Correlation Filtering 7.2.2 Wrapper Methods 7.2.3 Embedded Methods 7.2.3.1 Regularization/Shrinkage Methods 7.2.3.2 Support Vector Machines 7.2.4 Feature Construction 7.2.4.1 Clustering 7.2.4.2 Clustering Algorithms 7.2.4.4 Clustering Features	149 151 151 151 152 153 153 154 155 155 156 156 156 158 158 158 158
7.1	ons-Weiler Introduction Basic Concepts 7.2.1 Filter Methods 7.2.1.1 Criteria Based on Hypothesis Testing 7.2.1.2 Permutation Tests 7.2.1.3 Choosing Features Based on the Score 7.2.1.4 Feature Set Selection and Controlling False Positives 7.2.1.5 Correlation Filtering 7.2.3 Embedded Methods 7.2.3.1 Regularization/Shrinkage Methods 7.2.3.2 Support Vector Machines 7.2.4.1 Clustering 7.2.4.2 Clustering Algorithms 7.2.4.3 Probabilistic (Soft) Clustering 7.2.4.5 Principal Component Analysis	149 151 151 151 152 153 153 154 155 155 156 156 156 158 158 158 158 158 158
7.1	ons-Weiler Introduction Basic Concepts 7.2.1 Filter Methods 7.2.1.1 Criteria Based on Hypothesis Testing 7.2.1.2 Permutation Tests 7.2.1.3 Choosing Features Based on the Score 7.2.1.4 Feature Set Selection and Controlling False Positives 7.2.1.5 Correlation Filtering 7.2.3 Embedded Methods 7.2.3.1 Regularization/Shrinkage Methods 7.2.3.2 Support Vector Machines 7.2.4.1 Clustering 7.2.4.2 Clustering Algorithms 7.2.4.3 Probabilistic (Soft) Clustering 7.2.4.4 Clustering Features 7.2.4.5 Principal Component Analysis 7.2.4.6 Discriminative Projections	149 151 151 151 152 153 153 154 155 155 156 156 156 158 158 158 158 159 159
7.1 7.2	ons-Weiler Introduction Basic Concepts 7.2.1 Filter Methods 7.2.1.1 Criteria Based on Hypothesis Testing 7.2.1.2 Permutation Tests 7.2.1.3 Choosing Features Based on the Score 7.2.1.4 Feature Set Selection and Controlling False Positives 7.2.1.5 Correlation Filtering 7.2.3 Embedded Methods 7.2.3.1 Regularization/Shrinkage Methods 7.2.3.2 Support Vector Machines 7.2.4.1 Clustering 7.2.4.2 Clustering Algorithms 7.2.4.3 Probabilistic (Soft) Clustering 7.2.4.5 Principal Component Analysis	$\begin{array}{c}149\\151\\151\\151\\152\\153\\153\\153\\155\\155\\155\\156\\156\\156\\156\\158\\158\\158\\158\\159\\159\\160\\ \end{array}$

	7.4.1 Data and Pre-Processing	161
	7.4.2 Filter Methods	
	7.4.2.1 Basic Filter Methods	162
	7.4.2.2 Controlling False Positive Selections	162
	7.4.2.3 Correlation Filters	164
	7.4.3 Wrapper Methods	165
	7.4.4 Embedded Methods	166
	7.4.5 Feature Construction Methods	167
	7.4.6 Summary of Analysis Results and Recommendations	168
7.5	Conclusions	169
7.6	Mathematical Details	169
Ref	erences	170
8 F	Resampling Strategies for Model Assessment and Selection	
	hard Simon	173
	Introduction	
	Basic Concepts	
0.2	8.2.1 Resubstitution Estimate of Prediction Error	
	8.2.2 Split-Sample Estimate of Prediction Error	
8.3	Resampling Methods	
	8.3.1 Leave-One-Out Cross-Validation	
	8.3.2 k-fold Cross-Validation	
	8.3.3 Monte Carlo Cross-Validation	
	8.3.4 Bootstrap Resampling	
	8.3.4.1 The .632 Bootstrap	
	8.3.4.2 The .632+ Bootstrap	180
8.4	Resampling for Model Selection and Optimizing Tuning Parameters	181
	8.4.1 Estimating Statistical Significance of Classification Error Rates	183
	8.4.2 Comparison to Classifiers Based on Standard Prognostic	
	Variables	183
8.5	Comparison of Resampling Strategies	184
8.6	Tools and Resources	184
8.7	Conclusions	185
Ref	erences	186
9 (Classification of Genomic and Proteomic Data Using	
	oport Vector Machines	
	er Johansson and Markus Ringnér	187
	Introduction	
	Basic Concepts	
	9.2.1 Support Vector Machines	
	9.2.2 Feature Selection	
	9.2.3 Evaluating Predictive Performance	
9.3	Advantages and Disadvantages	
	9.3.1 Advantages	192

	9.3.2 Disadvantages
	Caveats and Pitfalls
	Alternatives
9.6	Case Study: Classification of Mass Spectral Serum Profiles Using
	Support Vector Machines
	9.6.1 Data Set
	9.6.2 Analysis Strategies
	9.6.2.1 Strategy A: SVM without Feature Selection
	9.6.2.2 Strategy B: SVM with Feature Selection
	9.6.2.3 Strategy C: SVM Optimized Using Test Samples
	Performance
	9.6.2.4 Strategy D: SVM with Feature Selection Using Test
	Samples
	9.6.3 Results
	Lessons Learned
	List of Tools and Resources
	Conclusions
	Mathematical Details
	erences
1001	
	Networks in Cell Biology
Car	los Rodríguez-Caso and Ricard V. Solé
10.1	Introduction
	10.1.1 Protein Networks
	10.1.2 Metabolic Networks
	10.1.3 Transcriptional Regulation Maps
	10.1.4 Signal Transduction Pathways
10.2	Basic Concepts
	10.2.1 Graph Definition
	10.2.2 Node Attributes
	10.2.3 Graph Attributes
10.3	Caveats and Pitfalls
10.4	Case Study: Topological Analysis of the Human Transcription
	Factor Interaction Network
10.5	Lessons Learned
	List of Tools and Resources
10.7	
10.8	Mathematical Details
	erences
	Identifying Important Explanatory Variables for
	ne-Varying Outcomes
Oliı	ver Bembom, Maya L. Petersen, and Mark J. van der Laan
11.1	Introduction
11.2	Basic Concepts

11.3 Advantages and Disadvantages	33
11.3.1 Advantages	
11.3.2 Disadvantages	34
11.4 Caveats and Pitfalls	35
11.5 Alternatives	37
11.6 Case Study: HIV Drug Resistance Mutations	39
11.7 Lessons Learned	45
11.8 List of Tools and Resources	46
11.9 Conclusions	47
References	48
12 Text Mining in Genomics and Proteomics	
Robert Hoffmann	51
12.1 Introduction	
12.1.1 Text Mining	
12.1.2 Interactive Literature Exploration	
12.2 Basic Concepts	
12.2.1 Information Retrieval	
12.2.2 Entity Recognition	
12.2.3 Information Extraction	
12.2.4 Biomedical Text Resources	55
12.2.5 Assessment and Comparison of Text Mining Methods	
12.3 Caveats and Pitfalls	
12.3.1 Entity Recognition	56
12.3.2 Full Text	
12.3.3 Distribution of Information	
12.3.4 The Impossible	
12.3.5 Overall Performance	
12.4 Alternatives	59
12.4.1 Functional Coherence Analysis of Gene Groups	59
12.4.2 Co-Occurrence Networks	60
12.4.3 Superimposition of Experimental Data to the Literature	
Network	60
12.4.4 Gene Ontologies	61
12.5 Case Study	
12.6 Lessons Learned	65
12.7 List of Tools and Resources	66
12.8 Conclusion	
12.9 Mathematical Details	
References	70
Index	75

List of Contributors

Keith A. Baggerly

Department of Biostatistics and Applied Mathematics, University of Texas M.D. Anderson Cancer Center, Houston, TX 77030, USA. kabagg@wotan.mdacc.tmc.edu

Oliver Bembom

Division of Biostatistics, University of California, Berkeley, CA 94720-7360, USA. bembom@berkeley.edu

Daniel Berrar

Systems Biology Research Group, University of Ulster, Northern Ireland, UK. dp.berrar@ulster.ac.uk

Benjamin M. Bolstad

Department of Statistics, University of California, Berkeley, CA 94720-3860, USA. bmb@bmbolstad.com

Kevin R. Coombes

Department of Biostatistics and Applied Mathematics, University of Texas M.D. Anderson Cancer Center, Houston, TX 77030, USA. krc@odin.mdacc.tmc.edu

Joaquín Dopazo

Department of Bioinformatics, Centro de Investigación Príncipe Felipe, E46013, Valencia, Spain. jdopazo@cipf.es

Werner Dubitzky

Systems Biology Research Group, University of Ulster, Northern Ireland, UK. w.dubitzky@ulster.ac.uk

Martin Granzow

quantiom bioinformatics GmbH & Co. KG, Ringstrasse 61, D-76356 Weingarten, Germany. martin.granzow@quantiom.de

Jaroslaw Harezlak

Harvard School of Public Health, Boston, MA 02115, USA. jharezla@hsph.harvard.edu

Milos Hauskrecht

Department of Computer Science, and Intelligent Systems Program, and Department of Biomedical Informatics, University of Pittsburgh, Pittsburgh, PA 15260, USA.

milos@cs.pitt.edu

xxii List of Contributors

Robert Hoffmann

Memorial Sloan-Kettering Cancer Center, 1275 York Avenue, New York, NY 10021, USA. hoffmann@cbio.mskcc.org

Peter Johansson

Computational Biology and Biological Physics Group, Department of Theoretical Physics, Lund University, SE-223 62, Lund, Sweden. peter@thep.lu.se

Kathleen F. Kerr

Department of Biostatistics, University of Washington, Seattle, WA 98195, USA. katiek@u.washington.edu

Xiaochun Li

Dana Farber Cancer Institute, Boston, Massachusetts, USA, and Harvard School of Public Health, Boston, MA 02115, USA. xiaochun@jimmy.harvard.edu

James Lyons-Weiler

Department of Biomedical Informatics, University of Pittsburgh, Pittsburgh, PA 15260, USA. lyonsweilerj@upmc.edu

Jeffrey S. Morris

Department of Biostatistics and Applied Mathematics, University of Texas M.D. Anderson Cancer Center, Houston, TX 77030, USA. jeffmo@wotan.mdacc.tmc.edu

Richard Pelikan

Intelligent Systems Program, University of Pittsburgh, Pittsburgh, PA 15260, USA. pelikan@cs.pitt.edu

Maya L. Petersen

Division of Biostatistics, University of California, Berkeley, CA 94720-7360, USA. mayaliv@berkeley.edu

Markus Ringnér

Computational Biology and Biological Physics Group, Department of Theoretical Physics, Lund University, SE-223 62, Lund, Sweden. markus@thep.lu.se

Carlos Rodríguez-Caso

ICREA-Complex Systems Lab, Universitat Pompeu Fabra (GRIB), Dr Aiguader 80, 08003 Barcelona, Spain. carlos.rodriguez@upf.edu

Richard Simon

National Cancer Institute, Rockville, MD 20852, USA. rsimon@mail.nih.gov

Ricard V. Solé

ICREA-Complex Systems Lab, Universitat Pompeu Fabra (GRIB), Dr Aiguader 80, 08003 Barcelona, Spain, and Santa Fe Institute, 1399 Hyde Park Road, NM 87501, USA. ricard.sole@upf.edu

Michal Valko

Department of Computer Science, University of Pittsburgh, Pittsburgh, PA 15260, USA. michal@cs.pitt.edu

Mark J. van der Laan

Division of Biostatistics, University of California, Berkeley, CA 94720-7360, USA. laan@stat.berkeley.edu