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Abstract Predicting the outcome of soccer matches with advanced data ana-
lytics is a fascinating endeavor. The 2023 Soccer Prediction Challenge invited
the machine learning community to develop innovative machine learning meth-
ods to predict the outcome of 736 future soccer matches. The Challenge posed
two tasks to the participants. Task 1 was to forecast the exact match score,
i.e., the number of goals scored by each team. Task 2 was to predict the match
outcome as probability vector over the three possible result categories: victory
of the home team, draw, and victory of the away team. We present a new data-
and knowledge-driven framework for building machine learning models from
readily available data to predict soccer match outcomes. A key component
of this framework is a new approach to modeling interdependent time series
data of competing entities. Using this framework, we developed various mod-
els based on k-nearest neighbor, artificial neural networks, naive Bayes, and
ordinal forests models, which we applied to the two tasks of the 2023 Soccer
Prediction Challenge. We also developed three reference models to gauge the
performance of the resulting models. Among all submissions to the Challenge,
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University of Evry-Paris Saclay, Évry-Courcouronnes, France
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our machine learning models based on k-nearest neighbor and neural networks
achieved top performances. Our main insights from the Challenge are that rel-
atively simple learning algorithms perform remarkably well compared to more
complex algorithms, and that the key to successful predictions lies in how well
soccer domain knowledge can be incorporated in the modeling process. Our
data- and knowledge-driven framework can be used in combination with a
plethora of supervised learning algorithms and is an important contribution
to the new field of machine learning in soccer.

Keywords 2013 Soccer Prediction Challenge; data- and knowledge-driven
framework; feature engineering; k-NN; ordinal forests; naive Bayes classifier;
neural networks; match outcome prediction; soccer analytics.

1 Introduction

Unlike individual sports, such as running, tennis or golf, team sports are char-
acterized by a much higher degree of complexity due to the vast number of
possible player interactions, moves, tactics, and strategy. Thus, predicting the
outcomes of team sports games is considered extremely difficult. Soccer, ar-
guably one of the most popular team sports worldwide, has developed into a
multi-billion dollar business. The modern game of association soccer is gov-
erned by the rules set forth by the Football Association Board and organized
by bodies like FIFA (the Fédération Internationale de Football Association)
and various continental and national federations. Predicting the outcome of
soccer matches has been a subject of research since at least the late 1960s
(Reep and Benjamin, 1968; Hill, 1974; Maher, 1982; Dixon and Coles, 1997;
Angelini and De Angelis, 2017). Over recent years, soccer match outcome pre-
diction has gained increased attention from the machine learning community,
and spurred by international data mining competitions like the 2017 Soccer
Prediction Challenge (Berrar et al., 2019a). The beauty of soccer match out-
come prediction is that the fundamental task can be understood by practically
anyone, and it is therefore also an excellent vehicle to showcase machine learn-
ing research to a wider audience. At the same time, it provides a truly exciting
challenge for machine learning.

While match outcome predictions are of interest to clubs, soccer associa-
tions, sports equipment and services companies, etc., it is certainly also in-
centivized by the betting industry (Malamatinos et al., 2022). Part of the
fascination of soccer is explained by the difficulty to predict the outcome of
a match. If we viewed a soccer match as a scientific experiment to determine
which team is better, we would realize that the number of robust measure-
ments is rather limited. A soccer match involves hundreds of skillful moves
and a wide variety of strategic and tactical plans, but the outcome is typically
decided by a handful of quick and often random events, for example, a free
kick, a mistake by the defender or goal keeper, an own goal, and so on. Yet
the average number of shots per game is typically only between 20 and 30,
and only 10% to 15% of these lead to a goal. In approximately 73.4% of the
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games, no more than three goals are scored, and about 66.2% of the matches
end in a draw or with a margin of victory of only a single goal.

On a more abstract level, league soccer could be a viewed as a pool of con-
tenders competing against each other in an attempt to gain an advantage over
their competitors. There are analogies to many other domains; for example,
in political science (e.g., the outcomes of debates between political candidates
is scored to create a win-loss-draw record at different time points), the en-
tertainment industry (e.g., two movies released at the same time compete for
box office revenue, and the “winner” is determined at weekly intervals), the
technological sector (e.g., “OS platform wars”), the tertiary education sector
(e.g., two similar universities compete for a higher ranking), medicine and
public health (e.g., the effects of two different interventions are monitored
over time), and many more. In all these contexts, the common thread is the
competition between two entities whose outcomes can be tracked over time.

This study presents a fundamentally new data- and knowledge-driven frame-
work for buidling machine learning models from readily available data to pre-
dict soccer match outcomes. A key component of this framework is a new
approach to modeling interdependent time series data of competing entities,
that is, data of soccer teams that compete against each other over time. To il-
lustrate and validate our framework, we developed a variety of machine learn-
ing models for the 2023 Soccer Prediction Challenge. This Challenge asked
participants to develop machine learning approaches to predict the scores and
results of 736 soccer league matches played in the second half of April 2023.
While the participants were allowed the use any publicly available data for
model development, the study presented here is deliberately based exclusively
on the training set provided by the Challenge. This dataset consists of more
than 300 000 league soccer matches covering 51 leagues in 34 countries. Each
entry in this dataset describes a match in terms of league, season, date, team
names, and final score. Other, more comprehensive datasets do exist, but they
are not readily available. Since the authors of this study are also the organizers
of the Challenge, our contributions were not in direct competition with the
other Challenge participants. However, we do compare our results with those
of the other participants.

The match records captured by the training set are “competitive” time
series that do not lend themselves to a straightforward machine learning ap-
proach. How to construct useful predictive features from these data to be
used for machine learning is not straightforward. Our framework incorpo-
rates soccer domain knowledge in the machine learning process by focusing
on the knowledge-driven engineering of predictive features from interdepen-
dent time series of competing entities. We used artificial neural networks, k-
nearest neighbor (Berrar et al., 2006), ordinal forests (Hornung, 2020), and
naive Bayes learning (Berrar, 2018) to illustrate and validate the framework.
We also developed three types of reference models to gauge the performance of
the machine learning models. Two of the three reference models are based on
simple statistics. The remaining reference model makes use of match outcome
odds provided by bookmakers.
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The novel contributions of our work can be summarized as follows: (1) We
present a new data- and knowledge-driven framework for developing machine
learning models from readily available match data. This framework includes
fundamentally new approaches to predictive feature engineering from interde-
pendent time series of competing entities. In principle, this framework can be
used in combination with various supervised learning algorithms. We believe
that our research is a milestone in the burgeoning field of machine learning
in soccer and is likely to spur further work in this fascinating domain. (2) We
validated our framework by building machine learning models that achieved
top performances in the 2023 Soccer Prediction Challenge. Our main insights
from this application are that relatively simple learning algorithms, such as
k-nearest neighbor, perform remarkably well compared to more complex algo-
rithms. The key to successful predictions clearly lies in how well soccer domain
knowledge can be incorporated into the development process.

This article is organized as follows. In order to aid those readers who are
not too familiar with the relevant soccer concepts, Section 2 briefly introduces
some of the important notions and terms reoccurring in this paper. Section 3
summarizes the related work. In Section 4, we briefly describe the 2023 Soccer
Prediction Challenge. In Section 5, we present the data- and knowledge-driven
framework, giving a comprehensive rationale for the methods and approaches.
In Sections 6 to 9, we apply and validate the framework by developing several
machine learning models and reference models for the 2023 Soccer Predic-
tion Challenge. The paper ends with a discussion (Section 10) and conclusion
(Section 11).

2 Background

There are various types of soccer competitions at club and national team
levels. However, the grassroots foundation of association soccer is league soccer.
League soccer refers to soccer competitions that are structured in a league
format. This includes professional leagues like the English Premier League or
the Major League Soccer in the United States as well as amateur leagues. In
these leagues, teams play a set schedule of games against one another, and
points are awarded based on the outcomes of these games (three points for a
victory, one point for a draw). Rankings within the league are determined by
the number of points teams have accumulated (with goal difference and goals
scored serving as tiebreakers).

A league soccer match refers to a competitive game that takes place be-
tween two teams within the structure of a specific soccer league. A league
comprises a fixed number of teams (e.g., the English Premier league has 20,
the German Bundesliga 18 teams). The first named team of a match is referred
to the as the home team, the second as the away team. A match always takes
place at the home team’s venue or ground (some rare exceptions exist). It is
well-known that the home team enjoys a competitive advantage called home
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advantage. Approximately 45% of all games end in a win by the home team.
A scheduled match is sometimes also referred to as a fixture.

There are normally two ways to state the outcome of a league soccer match:
score and result. The score gives the outcome of a match in terms of the number
of goals scored by the home and the goals scored by the away team. We use
the notation n-m as a shorthand for stating a match score. For example, 2-1
means that the home team scored two goals and the away team one goal. The
match results states the outcome of a match in terms of a home win, a draw,
and an away win. We often use the terms win, draw and loss as a kind of
shorthand for stating a match result. The result is derived from the score as
follows: A “win” means that the home team scored more goals than the away
team, for example, a score of 2-1 represents a “win” (by the home team). The
result is a draw if both teams score the same number of goals, e.g., a score of
2-2 is a “draw”. Finally, a “loss” (win by the away team) occurs if the away
team scores more goals than the home team, e.g., a 1-4 score represents a
“loss”.

The team that won the match is awarded 3 points. In case of a draw,
each team is awarded 1 point. Thus, using above shorthand for result, a “win”
means the home team gets 3 and the away team gets 0 points, a “draw” means
both teams get 1 point, and a “loss” means the away team gets 3 and the home
team gets 0 points. Based on the number of points, a league ranking table is
determined. Ties are typically resolved by goal difference and goals scored. By
the end of the season, the top-ranked team is normally crowned the “league
champion”. In leagues below the highest league, the top-ranked teams are
promoted to the league above. The bottom-ranked teams are relegated to the
next league below their league.

While match formats vary, in many leagues the matches are scheduled
to take place over the course of a season, which normally lasts around eight
months during which each team plays each other team twice, once at its home
venue or ground and once at the opponents’ venues.

The feature engineering approach presented in this paper revolves around
the teams’ past performances within a given league. Here, we distinguish three
aspects referred to as total, home, and away. “Total” means that we include
all considered past performances of a team, regardless of whether they have
been achieved at the team’s home venue or at the venues of its opponents. The
home and away view, on the other hand, focus separately on a team’s past
performance for home matches and away matches, respectively. This captures
explicitly the home and away aspects, but each view has only half the data
points of the total view.

Our approach to feature modeling breaks up the natural season boundaries
found in league soccer and introduces three separate league concepts: league,
super league, and meta league. Under the league view, we maintain the natural
structure of league soccer and process the data of a given league strictly in a
season-by-season fashion. Under the super league view, we combine all data of
a given league over all seasons covered in the Challenge datasets. This leads
to an artificial league that we call “super league”. Super leagues consist of



6 Daniel Berrar et al.

more teams than the underlying league would allow within a single season.
The meta league concept is even more radical, as it combines the data of all
leagues across all covered season in the Challenge data into a single league
called “meta league”.

3 Related work

One of the first studies on soccer data analysis concluded that chance domi-
nates the outcome of a match (Reep and Benjamin, 1968). Maher (1982) had
more success with a Poisson model for the number of goals that a team scores
during a match, which was applied to four English football league divisions
for the seasons 1973 to 1974. As Dixon and Coles (1997) pointed out, it is
comparatively easier to predict which teams will perform well in the long run,
whereas reliable predictions for individual matches are far more difficult. Ju-
rman (2020) showed that the match outcomes in longer competitions, such
as a national league, essentially follow a linear trend, which can be exploited
for match outcome prediction. Still, to what extent the outcome of match is
predictable remained largely unknown.

Over the last 20 years, machine learning methods have been increasingly
used for sports outcome prediction. In one of the first studies focusing on
soccer, O’Donoghue et al. (2004) used machine learning methods to predict
the results of the 2002 FIFA World Cup, but the best predictions were ob-
tained from a simulation study involving a commercial game console. More
recently, Malamatinos et al. (2022) used k-NN, LogitBoost, support vector
machines, random forests, and CatBoost to predict the outcomes of the Greek
Super League. Among the investigated models, CatBoost achieved the best
performance. Similarly, Kundu et al. (2021) used different learning algorithms
to predict the outcomes of matches of the English Premier League and ob-
tained the overall best performance with a gradient boosting regressor model.
Hubáček et al. (2019) and Berrar et al. (2019b) also reported promising results
from gradient boosted trees for the 2017 Soccer Prediction Challenge.

Ievoli and Palazzo (2021) used passing network indicators quantifying player
interactions as explanatory variables. They showed that network-based vari-
ables are related to a team’s offensive actions and can improve the performance
of forecasting models. Like in most real-world applications of machine learning,
the key to success seems to lie in how well domain knowledge can be modeled
and incorporated into the machine learning process (Berrar et al., 2019b).

Ren and Susnjak (2022) used the Kelly index to first categorize football
matches of different predictability and then applied a variety of machine learn-
ing algorithms, which were benchmarked against bookmaker odds. Razali et al.
(2022) developed a model for soccer match outcome prediction based on the
pi-rating system using TabNet, which is a deep neural network for tabular
data. The researchers re-analyzed the data from the 2017 Soccer Prediction
Challenge and reported a better performance than the top-rated participants.
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Stübinger et al. (2020) developed an ensemble of machine learning models
to predict outcomes based on match and player attributes. In a simulation
study, they included all matches of the top five European football leagues and
the corresponding second leagues between 2006 and 2018. They benchmarked
their predictions against the odds from one of the leading online bookmak-
ers. The ensemble model resulted in economically and statistically significant
returns of betting investments.

Predicting the outcome of a soccer match is extremely difficult. First, there
are many diverse factors that interact in highly complex ways to produce goals
in soccer. Second, compared to other team sports like basketball, ice hockey,
or volleyball, soccer is a sport with a very low number of scoring attempts
(shots on goal) and actual scores (goals) in a typical match. In the study pre-
sented here, we used a dataset that provides highly limited information about
soccer matches. Predicting the outcome based on such limited data represents
a formidable challenge. More comprehensive data about soccer matches may
exist in commercial databases, but these databases are not readily available.
However, as the mentioned studies illustrate, it is indeed possible to predict
the outcomes, at least to some extent. The goal of the 2017 Soccer Prediction
Challenge was to explore to what extent the outcome of a soccer match could
be predicted with machine learning based on readily available match data
(Dubitzky et al., 2019; Berrar et al., 2019a). The overall best performance
was achieved by a k-nearest neighbor model trained on rating features (Berrar
et al., 2019b).

4 The 2023 Soccer Prediction Challenge

Central to the 2023 Soccer Prediction Challenge is a dataset describing the
data of 736 league soccer fixtures from 44 leagues in 28 countries. This dataset
is referred to as prediction set. All fixtures in the prediction set were scheduled
to take place in the period between 14th and 30th of April 2023. The partici-
pants of the Challenge were asked to predict the outcomes of all 736 fixtures
by the strict deadline of 23:59 C.E.T. on 13th April 2023, i.e., prior to the start
of any of the matches. Specifically, the challenge was to predict the match out-
comes in terms of exact scores (Task 1) and a probability forecasts of the results
(Task 2). Participants were requested to address at least one of the two tasks.
To compare the submitted predictions, two error measures were defined and
communicated to the participants: the root-mean-square error (RMSE ) and
the ranked probability score (RPS ). The RMSE was used to evaluate the score
predictions (Task 1), and the RPS to evaluate the result predictions (Task 2).

The RMSE defined by Equation 1 computes the total error of score predic-
tions across a number of predicted matches,

RMSE =

√√√√ 1

n

n∑
i=1

[(ŝi(H)− (si(H))2 + (ŝi(A)− si(A))2] (1)
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where n is the number of matches in the prediction set; ŝi(H) denotes the
predicted and si(H) the observed number of goals scored by the home team
in the ith match, and ŝi(A) and si(A) are the respective predictions for the
goals scored by the away team, such that ŝi(H), si(H), ŝi(A), si(A) ∈ N0.

The smaller the RMSE, the better the predictions. In this definition, each
individual error is the sum of the squared difference of the predicted and
observed number of goals scored by the home, and the squared difference of
the predicted and observed number of goals scored by the away team.

Notice, for the evaluation of the Challenge score predictions, only positive
whole numbers including 0 were permitted. For some models in the present
study, we allow positive real numbers including 0 in the model training phase,
but round the final predictions to whole numbers including zero.

The RPS is a scoring function designed for ranked or ordinal categories
(Epstein, 1969; Constantinou and Fenton, 2012). The participants of the Chal-
lenge were required to provide their result predictions as a probability vector,
ŷ = (ŷ1, ŷ2, ŷ3), where ŷ1 denotes the predicted probability of a win, ŷ2 of a

draw, and ŷ3 of a loss, such that
∑3

j=1 yj = 1. To compute the RPS of such a
probabilistic forecast, we need to represent the observed result as a hotvector
y = (y1, y2, y3)|yj ∈ {0, 1} ∧

∑3
n=1 yj = 1. Hence, the hotvector (1, 0, 0) de-

notes an observed win, (0, 1, 0) a draw and (0, 0, 1) a loss. For example, given
the result prediction (0.6, 0.3, 0.1) and an observed draw, (0, 1, 0), the RPS
for this prediction works out to be 0.185. The lower the RPS, the better the
prediction. The RPS is defined as shown in Equation 2.

RPS =
1

2

2∑
i=1

 i∑
j=1

(ŷj − yj)

2

(2)

The average ranked probability score, RPSavg, was used to provide a com-
bined score of all predictions in the prediction set,

RPSavg =
1

n

n∑
i=1

RPSi (3)

In addition to the prediction set, the Challenge also provided a training set
consisting of the basic match data of 302 691 completed league soccer matches
from 51 leagues in 34 countries. All matches in the training set were played
after the 18/03/2000 and before the cut-off date of 05/04/2023. The cut-off
year of 2000 was chosen because from 2000 onward all leagues covered in the
training set have had adopted the three-points-for-a-win rule. The Challenge
participants were allowed to use any publicly available datasets to train their
machine learning models, or the training set provided by the organizers, or
both.

The approach and models in this study are based exclusively on the training
set (and prediction set) provided by the Challenge.
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Notice, due to late changes in the fixture schedules, the prediction set
that was finally used to evaluation the submission to the 2023 Soccer Predic-
tion Challenge was reduced to 714 matches. These matches originate from 43
leagues in 27 countries.

5 Data- and knowledge-driven framework

A machine learning approach to predicting the outcomes of soccer matches
based on readily available match data like those provided by the 2023 Soccer
Prediction Challenge entails the following: (1) use soccer domain knowledge
to understand the problem and inform the modeling process; (2) process and
transform the time series data from competing teams, with the goal of deter-
mining optimal predictive features; (3) generate and evaluate machine learning
models based on test data; (4) apply selected models to the Challenge predic-
tion set for an independent evaluation on real future data.

The subsections below describe the various aspects of the data and the
framework.

5.1 Readily available match data—the Challenge data

The training data provided for the 2023 Soccer Prediction Challenge captures
basic information about soccer matches. Each entry includes the date on which
the match took place, the names of the two teams facing off in the match, the
final score, the name of the (association) soccer league, and the season in which
the match was played. Table 1 shows the first five entries of the training set.

Table 1: Excerpt of the Challenge training set (Sea=season, Lge=league,
HT=home team, AT=away team, HS=home score, AS=away score, GD=goal
difference, WDL=win(W), draw (D), or loss(L))

Sea Lge Date HT AT HS AS GD WDL

00-01 GER1 11/08/2000 Dortmund Hansa Rostock 1 0 1 W

00-01 GER1 12/08/2000 Bayern Munich Hertha Berlin 4 1 3 W

00-01 GER1 12/08/2000 Freiburg VfB Stuttgart 4 0 4 W

00-01 GER1 12/08/2000 Hamburger SV Munich 1860 2 2 0 D

00-01 GER1 12/08/2000 Kaiserslautern Bochum 0 1 -1 L

Note, the season values in Table 1 are a shorthand. For example, “00-
01” is an abbreviation for the “2000/2001” season (sometimes also written
“2000/01”).

Clearly, this data is rather limited in terms of variables that are potentially
predictive of the outcome of a soccer match. However, one of the advantages of
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the training data is that they are widely and readily available, both in terms
of historic records and timely availability before future matches take place.

The Challenge training set includes only two quantitative variables (pos-
itive whole numbers including 0), i.e., the final score of completed matches.
Each score variable could at the same time be viewed as a characteristic of
the home team as well as the away team. For example, a match score of 4-1
is simultaneously indicative of the home team’s attacking strength (the home
team scored 4 goals) and the away team’s defending weakness (the away team
conceded 4 goals).

In addition to the quantitative score variables, the training data include
the names of the teams facing off against each other. Potentially, these nom-
inal categorical variables could serve as predictive features. For example, the
correlation of the team name pair (Liverpool,X) with a home win might be
stronger than that of the pair (Fulham,X) (where X is any other team in the
league).

One aspect of league soccer is that all matches are confined to within a
league and a season. This means that the league (nominal categorical) and
season (nominal ordinal) variables are identical for all matches in a given
league and season. Thus, these variables do not seem to be good predictors of
individual matches.

The date variable does not seem to by highly predictive in terms of the
outcome of individual matches, either. Typically, on a given date, multiple
league matches take place. However, the date variable is crucial, as it imposes
a total (chronological) order relation on the matches from the oldest to the
most recent matches. Therefore, each team in the Challenge training set could
be viewed as a subject or individual of a longitudinal time series, because
certain characteristics of a team could be “measured” at multiple points in
time. Consider Table 4. Focussing on Liverpool, we can track the goals that
Liverpool has scored over time as follows: 2 goals in the match on 13/02/2023,
2 on 18/02/2023, 0 on 25/03/2023, and so on. However, we need to keep in
mind that such quantities not only depend on the team under consideration,
but also on the team’s opponent. It is obviously easier to score goals against an
opponent with a weak defense. If we computed the average of such quantities
over a number of time points, then the influence of individual opponents should
average out. The feature engineering approach presented in this study is based
on the concept of longitudinal team performance time series.

5.2 The team perspective

It is not immediately obvious how the Challenge training set could be used
to train machine learning models. In order to make the data amenable to
machine learning, we need to determine a data feature representation which
is predictive of the match outcome. Here, we explain our approach to feature
modeling from the perspective of teams.



Data- and Knowledge-Driven Framework for Soccer Match Outcome Prediction 11

Given the two teams facing off in a match, our main concept of predic-
tive modeling revolves around the idea that prior to a match, each of the two
opposing teams could be characterized by a set of quantitative features that
are prognostic of the match outcome. Such features could be grouped into the
team performance, such as the team’s ability to score goals, concede no goal
over a sequence of matches, achieve certain victory rate at the team’s home
venue, and so on. These categories are necessarily linked to the two quantita-
tive score variables of the training data. Even with the highly limited data we
have in the training set, a considerable number of such categories are conceiv-
able. According to soccer domain knowledge, the following team performance
aspects should important for predicting the outcome of a competitive soccer
league match: attacking and defending ability, ability to maximize results, and
performance or success in the league. Based on these, we focus on the specific
team performance categories depicted in Table 2.

Table 2: Eight important team performance categories

Performance category Description

Scoring Team’s ability to score goals (attacking performance)

Conceding Team’s ability to prevent goals (defensive performance)

Scoring/conceding Team’s aggregate ability of scoring and conceding goals

Winning Team’s ability to win matches

Drawing Team’s ability to hold a draw

Losing Team’s propensity to lose matches

Points Team’s ability to earn points

League Team’s league table position

The Scoring and Conceding team performance categories relate directly to
the two score variables in the training set. A soccer team that scores many
goals (in relation to its competitors) could be viewed as having a strong attack.
Similarly, a team that consistently prevents its opponents from scoring many
goals is likely to have a strong defense. The stronger a team’s attack and
defense compared to its opponent’s attack and defense, the more likely it is to
prevail. The Scoring/Conceding category refers to an aggregate or combination
of the team’s Scoring (attack) and Conceding (defense) categories.

The Winning, Drawing, and Losing performances of a team relate directly
to the result of matches (win, draw, loss), the points that a team earns, and how
the team performs in the league as a whole. The Points category is essentially
similar but provides a different “view” of the same aspects. This is relevant,
given the points awarding scheme in league soccer (3 points for a win, 1 for a
draw, and 0 for a loss).

The League category provides a kind of “league-calibrated” view of a team’s
overall performance or success in the league. How successful a team is in the
league is expressed by the team’s position or rank in the league table. The
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higher a team is ranked in the table, the more competitive the team is in
relation to teams ranked below it. Soccer league tables are normally ordered
by points first and then by goal difference (and by the number of goals scored).

The team performance categories discussed so far do not explicitly differ-
entiate a critical factor called home advantage. The home advantage in soccer
(and indeed other team sports) is a well-known phenomenon whereby teams ex-
perience a considerable competitive advantage by playing at their home venue
(Wunderlich et al., 2021; Nevill and Holder, 1999). Based on the Challenge
training set of over 300 000 matches, we can provide a quantitative estimate
of the home advantage as follows: 44.83% matches are won by the home team
(compared to 28.14% wins by the away team), and the average number of
goals scored by the home and away team is 1.47 and 1.12, respectively. The
team performance categories discussed above could be constructed separately
for a team’s home, or away and total (home and away matches combined)
performances. Thus, our feature modelling framework is capable of explicitly
capturing the home advantage dimension.

So with the eight feature candidates listed in Table 2, we could potentially
represent the performance of a single team by a maximum of 24 features—
eight features for each of the total, home, and away performances, respectively.
Notice, this approach to data feature representation would be highly redundant
because six out of the eight basic feature categories are ultimately derived from
the scoring and conceding performances, and the eight total performances are
derived from the home and away performances, respectively. Since each match
involves two teams, the maximum number of features per match would be
48, that is, 24 for the home team and 24 for the away team. Ideally, a layered
automated feature learning approach like deep learning could then be employed
to construct the optimal feature representation.

Having identified potential predictive features that could be constructed
from the training data to facilitate machine learning, the question is: “How do
we construct these?” It turns out that there are a number of issues that need
to be considered before we can proceed.

Table 3: Man City matches on and prior to 01/04/2023

Date HT AT HS AS

12/02/2023 Man City Aston Villa 3 1

15/02/2023 Arsenal Man City 1 3

18/02/2023 Nottingham Forest Man City 1 1

25/02/2023 Bournemouth Man City 1 4

04/03/2023 Man City Newcastle United 2 0

11/03/2023 Crystal Palace Man City 0 1

01/04/2023 Man City Liverpool 4 1
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Table 4: Liverpool matches on and prior to 01/04/2023

Date HT AT HS AS

13/02/2023 Liverpool Everton 2 0

18/02/2023 Newcastle United Liverpool 0 2

25/02/2023 Crystal Palace Liverpool 0 0

01/03/2023 Liverpool Wolverhampton 2 0

05/03/2023 Liverpool Man United 7 0

11/03/2023 Bournemouth Liverpool 1 0

01/04/2023 Man City Liverpool 4 1

Let’s say we are considering an upcoming match between the home team
H and the away team A. For each team, we compute an estimate of a feature
f by aggregating the n recent performances corresponding to the feature f .
Obvious candidates for aggregation include the mean and median. To illustrate
this idea, consider Tables 3 and 4: for the ENG1 league match on 01/04/2023
between Man City and Liverpool (which ended in a 4-1 win for Man City), we
determine that Man City scored 2.33 and Liverpool 2.17 goals on average in
the their n = 6 recent encounters prior to the match. So before the teams are
facing off, the scoring performance of Man City was considerably higher than
that of Liverpool.

Tables 3 and 4 illustrate two interesting aspects of this feature modeling
scheme. First, we see that the number of home and away matches that the
two teams played in their six recent matches prior to 01/04/2023 is not the
same—Man City played two home and four away matches, whereas Liverpool
played three home and three away matches. Second, the time stamps in the
date columns of Tables 3 and 4 show that the six recent matches of the two
teams were not all played on the same dates. This leads to a situation where
one team may have longer recovery times between matches than the other.
However, the longer the time series becomes, the lower will be the effect of the
home/away and time stamp discrepancies.

This leads us to the critical question: “How far back should one look into
the history of recent matches of the teams to construct optimal features?” To
answer this question, we need to consider various aspects of the league/season
structure of league soccer.

5.3 The league/season perspective

The Challenge training set comprises a total of 302 691 matches covering 51
leagues in 34 countries. In each country, league soccer is structured into three
separate levels of organization, each level providing its own context. The first
level of organization is the country level. The leagues within a country are
structured along a hierarchy of divisions or tiers. The higher the division, the
higher the quality of the teams playing in that division. The second level is
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the league level. Within a league, the number of teams is fixed. From league
to league the number may vary, e.g., the SCO1 league consists of 12 and the
ENG2 league of 24 teams. Each league organizes its matches into seasons. The
duration of a soccer season varies by country and league. A typical season is
played over a period of about eight to ten months. The number of seasons
covered for each league in the training set varies from a minimum of 10 to
a maximum 24. The earliest season covered is the 2000/2001 season and the
most recent one is the 2023/2024 season.

Across all leagues and seasons, the data format in the training set is the
same. Thus, one might be tempted to model the features by combining all
league-season subsets into a single large dataset. However, domain knowledge
as well as the data tell us that the characteristics of the leagues may vary from
one league to another. In statistical terms, one cannot necessarily assume that
data from different leagues come from the same population. We refer to this
as the cross-league compatibility problem. We briefly illustrate this issue based
on the home win proportion and away goal average for the DZA1 and JPN2
leagues in the Challenge training set. The home win proportion is 53.21% for
DZA1 (Algerian top division) and 39.12% for JPN2 (2nd division of Japan),
respectively. Given these league-to-league variations, one must assume that
constructing features by simply merging all leagues into a single large dataset
is probably not wise.

Processing the data for each league separately raises the question of how
to deal with the seasons within a league. Soccer domain knowledge informs us
that each season within a league is unique. This implies that a team in one
season may not be necessarily directly comparable with the same team in the
next season. We refer to this as the season-transition problem. There are two
main components to the season-transition problem: (1) the change of teams
that feature in a league from season to season; (2) the change within teams,
in particular with regard to their players, from season to season.

Most soccer leagues see a change of teams featuring in the league due to
relegation and promotion. This means that by the end of a season, some of
the lowest ranked teams in the league will be relegated to the league below,
while some of the highest ranked teams will be promoted to the league above.
For top league in each country, teams leave the league only via relegation
route. In the Challenge training set, 34 of the 51 leagues represent top-tier
leagues in their respective countries. This means the team fluctuation across
seasons is limited, because the lowest ranked teams will be replaced by the
highest ranked teams from the league below. For example, the GER1 league
comprises 18 teams. After each season, two or three teams are relegated to
the lower GER2 league and replaced by promoted teams from GER2. This
means that 15 or 16 out of 18 teams that played in one season in GER1
play also in the following season. So there is a reasonable consistency from
season to season. 17 out of the 51 leagues in the Challenge training set have a
league above and below them. For these leagues, there is a greater shake-up in
terms of the teams featuring in the league from season to season. For example,
between 4 to 6 out of a total of 18 teams featuring in the GER2 league will be
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replaced as a result of promotion (from GER3 to GER2) and relegation (from
GER1 to GER2). Although somewhat less than in the 34 top-ranked leagues,
there is still a majority of teams that remain in the league from season to
season. The following example from the GER1 league further illustrates the
relative “stability” of teams belonging to a league across season boundaries.
Over the 23 seasons (from 2000/2001 to 2022/2023 season) covered for the
GER1 league (which always comprises 18 teams) in the training set, no more
than 37 teams featured in the league. This relative stability of teams within a
league is central to our feature modeling approach.

Transiting from season to season, another—and perhaps even more important—
problem crops up. At the months-long break between seasons, soccer clubs
usually change many things, from coaching staff, to players, to new business
arrangements with sponsors, etc. Perhaps one of the most critical changes is
due to players leaving the team and new players arriving. This is critical be-
cause the players are the most valuable assets that professional soccer clubs
have. And there are regulatory restrictions on when players can be recruited.
Usually, there are only two windows in a season where this happens. Therefore,
errors made when changing the composition of the players of a team cannot be
immediately corrected. Also, it is always a challenge to integrate new players
into a team.

After investigating the main aspects arising from cross-league differences
and from the season to season transitions within a league, we view (for the
time being) the matches played within a particular league and season as the
most “natural” unit. Based on this assumption, feature engineering should
be performed separately for each of such units before any further data inte-
gration or model training should occur. This view is consistent with common
soccer domain knowledge. While this assumption seems absolutely sound, we
ultimately abandoned it in our feature engineering approach, for the following
reasons.

Computing features separately for each season within each league does
raise some issues; especially, matches at the start and end of the season pose
problems.

First, towards the end of a season, many decisions (promotion, relegation,
championship, qualification for other competitions, etc.) have normally been
settled before the final matches are being played. Thus, a number of matches
in the final stages of a season may no longer be fully competitive, casting doubt
on the robustness of features derived from such matches. This is what we refer
to as the end of season problem. Ideally, such matches should be identified and
perhaps removed from the training data altogether. However, the disadvantage
is that dropping matches will reduce the size of the training set.

Second, at the beginning of the season, we face what we refer to as the start
of season problem. As a season for a given league gets underway, all teams
start with zero goals and zero points. We have to wait until each team has
played a decent number of matches before we can compute reliable performance
indicators. The problem is that this leads to a considerable reduction of the
instances in training data. To illustrate this idea, let’s say we require each team
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to have played a minimum of six matches before we compute performance
features. Consider the total of 380 matches played over a single season in the
ENG1 league (20 teams). We already lose the last 10 matches from the dataset,
as we do not have any features to compute for any matches after the last match
day in the season. Depending on the concrete match schedule, additional 60
matches would be lost when we require each team to have played a minimum
of six matches. So in total, we lose about 70 (18.4%) of the 380 matches from
a single season of ENG1.

The strength of the opposition problem is perhaps one of the more subtle
aspects relevant to feature engineering. As we aggregate various past perfor-
mances of a team into a predictive feature value, we should factor in the
strength of the opponent against which the team has achieved these perfor-
mances. For example, a 2-1 win against a top team should carry more weight
than a 3-1 win against a lesser opponent.

Finally, we consider the recency problem. If we model features based on the
performances of the teams over their n recent matches, we need to determine
an optimal value for n. The first obvious choice is to include all matches
a team has played in the current season prior to a given match. The idea
is that the features would become more robust the further the season has
progressed. However, one could argue that performances too far back in the
season are obsolete and no longer predictive for the current match. So in
a sense, we are looking at a compromise between long-term and short-term
performance trends. Adopting a within league-season approach for feature
modeling means that the number n of recent matches that one could consider
for a team changes gradually from 0 (for the team’s first match in a season)
to the maximum of N (for the team’s last match) over a season. The value of
N depends on the format of the league schedule, which varies from league to
league, an the number of teams, T , featuring in a league. A common schedule
format consists of each team playing the other twice, once at home and once
at the away venue. For such a format, N = 2T − 1, where T denotes the
number of teams in a league. For example, for the ENG1 league, T = 20,
hence N = 2×T − 1 = 2× 20− 1 = 37. This means that right before a team’s
last (38th) match in the season in the ENG1 league, a team has already played
n = 37 matches. These 37 matches would be the basis for calculating the actual
features indicative of the outcome of the current match (in this case the last
match of the team in the season). However, the problem is that this is the
maximum value for n. In particular, in the beginning of the season, n is small
and perhaps not ideal for calculating robust predictive features.

5.4 The feature model

Having considered various aspects relevant to feature modeling, we performed
an exploratory data analysis and model prototyping using the k-nearest neigh-
bor algorithm. This has led us to adopt the following feature modeling assump-
tions and decisions:
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Table 5: Nine selected teams of the ENG1 super league over nine consecutive
seasons, including the season 2022/23 up to 4th April 2023. The cell numbers
state the number of games a team has played in the corresponding season. The
Sum column states the total number of matches a team has played since the
start (2000/01) of the super league.

Team 14-15 15-16 16-17 17-18 18-19 19-20 20-21 21-22 22-23 Sum

Norwich City 0 38 0 0 0 38 0 38 0 266

Portsmouth 0 0 0 0 0 0 0 0 0 266

Fulham 38 38 38 38 38 0 38 0 28 266

Watford 0 38 38 38 38 38 0 38 0 266

Burnley 38 0 38 38 38 38 38 38 0 304

Nottingham Forest 0 0 0 0 0 0 0 0 28 28

Middlesbrough 0 0 38 0 0 0 0 0 0 380

Newcastle United 38 38 0 38 38 38 38 38 27 787

Man City 38 38 38 38 38 38 38 38 28 826

– Compute features strictly separately for each league.
– For each league, merge matches from all seasons into a “super league”.
– Let data analysis and model prototyping decide the best recency depth n.
– Explore a limited number of “plausible” (based on domain knowledge)

feature sets.
– Select promising features sets and develop machine learning models.

Based on our analyses, we decided to compute features strictly on a league-
by-league basis. Furthermore, we merged the data from all seasons within a
league and sorted the resulting dataset chronologically based on the date vari-
able. This process generated a kind of “super league”. Such a super league
approach has two main advantages. First, it explicitly captures the idiosyn-
cratic context of each league, thus mitigating the cross-league compatibility
problem. Second, for most teams, it allows us to construct much longer time
series than would be possible with a season-by-season approach. This should
reduce the impact caused by the beginning-of-season-problem.

Conceptually, as discussed above, the super league approach contradicts
common soccer wisdom because the composition of the teams may change
drastically from one season to the next due to change of players, coaching staff,
club ownership, sposorship, etc. Other problematic issues include a potential
limitation of the length of the time series for some teams and “gaps” in the
time series for teams that feature in the super league for only a few seasons.

Merging all seasons of a league into a single super league means that all
teams that have ever played in the corresponding league make up the super
league. For instance, the training set covers 23 seasons for the ENG1 league
from the 2000/01 to 2022/23 season. After merging the matches of all 23
seasons into one super league, the resulting dataset contains a total of 8639
matches and includes the 45 teams that have ever played in ENG1 in these 23
seasons. Table 5 depicts a selection of nine teams over nine seasons of the ENG1
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league. Notice, all seasons except the last (labelled 22-23) are complete. Since
there are 20 teams in the ENG1 league, each team plays a total of 38 matches
over a complete seasons. First, we notice that Portsmouth has not played in
any of the nine seasons depicted in the table. But the Sum column suggests
that Portsmouth has featured 266 times in the ENG1 league in the seasons
from 2001/01 to 2013/14 (prior to the nine seasons in the table). Second, we
can infer from the table that Man City has featured in 22 of the 23 seasons
covered by the training set (the team missed out on the 2001/02 season).
Third, we see that most teams depicted in the table (except Man City) did
not feature in all of the nine seasons shown in Table 5. This causes gaps in their
team performance time series. For example, Norwich City appeared only in 3
of the 9 seasons depicted in the table, with 3 one-season and one three-season
gaps. After some experimentation, we decided that from the perspective of a
given match, we can simply concatenate all matches prior to the current match
in chronological order, so that we have a continuous time series for each team
spanning all seasons the team has featured in the league. For example, if we
are interested in the average number of goals that Watford scored in their
n = 50 matches prior to their last (38th) match of the 2021/22 season, we
would consider Watford’s remaining 37 matches of the 2021/22 and the last
13 matches in the 2019/20 season (i.e., we simply ignore that Watford did not
feature in ENG1 in the 2020/21 season).

Another subtle issue with the super league approach is linked to teams
that feature only a small number of seasons in the time frame covered by the
Challenge dataset (from 2000/01 to 2022/23 seasons). For these teams, the
length of the team performance time series is limited to the number of times
they featured in the league. For example, there are four teams that featured
only in a single season in the ENG1 league over the considered time frame.
For these teams, the maximum length of the team performance time series
is limited to 38 time points. Nottingham Forest is one of those teams. Since
they have entered the ENG1 for the first time in the incomplete Challenge
season 2022/23, their situation is even worse, as they have appeared only in
28 matches in the entire training set.

One of the major advantages of the super league approach is that it af-
fords the computation of much longer time series than would be possible with
a within-season approach. Another advantage is the flexibility it gives us in
terms of the datasets that we use for model training. First, since the datasets
created by the super league approach capture the characteristics of each league
separately, we have the flexibility to combine such datasets before model train-
ing. For example, we could combine all three super league feature datasets
from the three Germany leagues (GER1, GER2, GER3) into a single “country
league” dataset, or we could indeed combine all super league feature datasets
arising from the Challenge training set into a single “meta league” dataset.
Second, we could also keep the super league feature datasets separate and
train our models strictly on a league-by-league basis, i.e., for a given league,
we develop a machine learning based exclusively on the corresponding super
league dataset.
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Unfortunately, the end-of-season-problem is not explicitly addressed by the
super league approach presented here. Our modeling assumption is to ignore
this issue, as it affects only a handful of matches per league and season. One
way to address this problem would be to identify the affected matches and
remove them altogether from the dataset. To realize this, a highly manual and
extremely time-consuming procedure would be required.

As described above, our approach to feature modeling could be subject to
gaps if we considered very long time series that cut across seasons. For the
Challenge, we encountered the unexpected situation that the prediction set
featured a couple of teams whose team performance time series were limited
to only a handful of matches. This situation came about because the affected
teams have never been a member of the league before and that the seasons in
those leagues commenced only a few weeks prior to the Challenge deadline.
So for those teams, the features are based on very short time series. Feature
value estimates derived from such short time series may not be very robust.

In this study, we deal with the home advantage aspect in two ways. First,
we use two features sets, one containing total, home as well as away, and
one containing only total team performance features. The former feature set,
referred to as “homeaway”, provides an explicit representation of the home
advantage. Second, for total team performance features (which merges home
and away performances into a total performance category), we have a less
explicit representation of the home advantage, as the home team’s features
always come before the away team’s features in the feature training set.

The feature engineering concept presented here could produce a certain
amount of “information leak” and therefore lead to a slight underestimation
of the generalization error produced by machine learning models. In our feature
modeling approach, each match is characterized by the past performances of
the two teams facing off in a match. Once the features for all matches in the
training set are determined, we usually split the data randomly into training
and test set in order to estimate the model prediction performance. This could
lead to the odd situation that some aspects of a team’s future performance
(seen from the data of the current match in the training set) could be leaked
from the test set to the training set. By adopting various cross-validation
procedures, we hope to mitigate the effect that this has on the overall modeling
process. We accept that this may result in a slight underestimation of the
model’s generalization error. However, the feature calculation itself does not
have this problem, as the features are strictly based on prior performance. Also
note that the information leak is not possible for the Challenge prediction set,
which is essentially the ultimate “test set”, as the outcomes of the matches in
the prediction set are not known at the time of model construction.

5.5 Feature generation

Our feature engineering procedure is firmly rooted in the somewhat counter-
intuitive super league approach outlined above. This means that we compute
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features solely on a league-by-league basis, and we merge all seasons of a
league covered in the datasets into a super league. Based on our reflections
on feature modeling and some initial data analysis and model prototyping, we
explored several feature sets. We ended up with two concrete choices. Each of
the two chosen feature sets rests on three of the eight basic team performance
categories shown in Table 2: Scored and Conceded goals and League success.
Our choice is justified as follows. First, the goals that the teams score and
concede are the only two primary quantitative variables in the Challenge data.
They provide a direct competitive view of the teams facing off in a match.
All other team performance categories are derived from these two variables.
Second, the team performance category League success provides a context of
the two opposing teams in the league as a whole. In a sense, the League success
category “qualifies” the goal performance categories.

The two feature sets upon which our modeling and evaluation is based are
referred to as total and homeaway feature sets, respectively. Total features
are based on the combined home and away matches that a team has played.
Homeaway team features are computed separately for the home and away
matches of the team.

Let T denote either the home or away team facing off in a match. Further,
let v ∈ {h, a, t} refer to either the home (h), the away (a), or the total (t)
(i.e., home and away combined) “venue”, respectively, where the team’s per-
formance was made. Then, we define the feature fv(T, nv) as the mean value
of a team’s performance over a team’s nv recent matches at the corresponding
venue v as shown in Equation 4.

fv(T, nv) =
1

nv

nv∑
i=1

fv,i(T ) (4)

To illustrate this calculation, consider the current fixture Man City against
Liverpool on 01/04/2023 depicted in Table 4. If feature f represents the goals
scored (expressed as an average per match) and T stands for team Liverpool,
we determine the feature values fh(Liverpool, nh) = 3.67 and fa(Liverpool, na) =
0.67 over the na = na = 3 recent home and away matches, respectively,
and ft(Liverpool, nt) = 3.00 over the nt = 3 total matches of Liverpool.
If feature f represents Liverpool’s match winning performance (expressed as
average wins per match) over the nh = na = 3 recent matches, we obtain
fh(Liverpool, nh) = 1.00 (3 wins out of recent 3 home matches), fa(Liverpool, na) =
0.33 (1 win out of 3 away matches) and ft(Liverpool, nt) = 0.66 (2 wins out
of nt = 3 recent matches).

Conceptually, we should always use an even number for the nt recent total
performances of a team and nh = na = nt/2 for the nh and na recent home
and away performances of a team. The reason for this choice is explained by
the match schedule adopted in most leagues, where normally a team plays in
an alternating fashion on the home and away venues. Thus, focusing on even
values for nt, we generally make sure that we capture the same number of
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home and away matches of a team. Using nt/2 for both nh and na has two
reasons. First, this choice makes sure that the time period covered by nt is
roughly the same as the combined time period covered by the nh = nt/2 and
na = nt/2 recent matches. Second, the matches of a team covered by nt recent
total and nh = nt/2 and na = nt/2 combined are normally the same.

In the remainder of this text, we use n sometimes in a generic way to refer
to the number of recent matches independent on venue, and sometimes it is
implied that n refers only to nt, the total team performances (Table 7).

For the League success feature, which represents the average league position
of a team over n recent matches, we do not use the absolute ranks from the
league table to compute the aggregate (average) feature values. Absolute rank
positions could be used if the data were kept separate from other league data
for the entire modeling cycle. Since we combine the data from all leagues
for the homeaway feature set (meta league), using absolute ranks would be a
problem because the number of teams in a league varies. To address this issue,
we first calculate the normalized rank for each team and then determine the
average over n recent matches. The normalized rank of a team is expressed as
a value from the unit interval. A team ranked first has a normalized rank of
1, and a team ranked last has a normalized rank of 0.

Given the absolute rank R(T,N, n) of a team T in a league table derived
from the n recent matches of N teams, the team’s normalized rank r(T,N, n)
is calculated using Equation 5. Notice that we may apply this calculation either
to home or away matches only, or to all (total) matches, to make the result
dependent on the venue in the same way as the features discussed above. Here,
for conciseness, we present only the generic formula.

r(T,N, n) =
N −R(T,N, n)

N − 1
(5)

To illustrate Equation 5, consider Table 6. The table depicts two league
tables covering the top 7 ranks prior to the match between Man City and Liv-
erpool on 01/04/2023 (see also Tables 3 and 4). The top league table covers
all matches from the start of the season 2022/23 to 19/03/2023. The bottom
league table is based on the n = 6 most recent matches of each team prior
01/04/2023. The total average normalized rank, r(ManCity, 20, 27), of Man
City over the entire season up to 19/03/2023 was 0.95 (based on 27 matches),
that of Liverpool, r(Liverpool, 20, 26), only 0.68 (based on 26 matches). How-
ever, when we consider only the n = 6 most recent matches, we see that Liv-
erpool fared much better than for the entire season: r(ManCity, 20, 6) = 0.95
and r(Liverpool, 20, 6) = 0.89, respectively.

With these considerations, we now present the two feature sets chosen for
this study: the total and homeaway feature sets, respectively. The total feature
set consists of the six features depicted in the top six rows, and the homeaway
feature set consists of all 18 features depicted in Table 7.

For the total feature set, n recent matches of the teams are used to compute
the aggregated values for goals scored, goals conceded, and normalized rank.
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Table 6: League tables from rank 1 to 7 of ENG1 2022/23 season. Top: Based on
all matches of a team from start of season. Bottom: Based on the 6 most recent
matches of each team. (R=Absolute rank, Pld=Matches played, Scr=Goals
scored, Con=Goals conceded, r=Normalized rank, scr=Average goals scored,
con=Average goals conceded

Team R Pld Scr Con r scr con

Arsenal 1 28 66 26 1.00 2.36 0.93

Man City 2 27 67 25 0.95 2.48 0.93

Man United 3 26 41 35 0.89 1.58 1.35

Newcastle United 4 26 39 19 0.84 1.50 0.73

Tottenham Hotspur 5 28 52 40 0.79 1.86 1.43

Brighton 6 25 46 31 0.74 1.84 1.24

Liverpool 7 26 47 29 0.68 1.81 1.12

Team R Pld Scr Con r scr con

Arsenal 1 6 19 5 1.00 3.17 0.83

Man City 2 6 14 4 0.95 2.33 0.67

Liverpool 3 6 13 1 0.89 2.17 0.17

Brighton 4 6 9 4 0.84 1.50 0.67

Man United 5 6 9 10 0.79 1.50 1.67

Tottenham Hotspur 6 6 11 9 0.74 1.83 1.50

Aston Villa 7 6 10 8 0.68 1.67 1.33

For example, given the ENG1 match on 01/04/2023 between Man City and
Liverpool (see also Tables 3 and 4), the values for all six features based on
the n = 6 recent total matches are as follows (see bottom part of Table 6):
scrt,6(ManCity) = 2.33, cont,6(ManCity) = 0.67, rt,6(ManCity) = 0.95,
scrt,6(Liverpool) = 2.17, cont,6(Liverpool) = 0.17 and rt,6(Liverpool) = 0.89.

The homeaway features set includes the total feature set (upper part of
Table 7) based on the teams’ n recent total matches as well as the aggregated
values for goals scored, goals conceded, and normalized rank of each team over
n/2 recent home and away matches, respectively. The reason to have both the
total as well as the home and away records in this feature set is that we
capture both the total performance and have also an explicit representation
of the teams’ home and away performance. Moreover, we strike a compromise
between the venues and time periods covered for total and home and away team
performances. The basic intention of such a redundant feature representation
is that the learning algorithm should find the optimal balance between these
important soccer aspects.

The value for the total features based on n recent matches is not necessarily
a combination of the two sets of n/2 matches for home and away matches of a
team. To illustrate this point, consider Tables 3 and 4. The n = 6 recent total
matches of Liverpool (Table 4) cover exactly Liverpool’s n/2 = 3 home and
n/2 = 3 away matches. Thus, the aggregated features of the recent three home
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Table 7: Top 6 rows: Total feature set consisting of 6 features based on all
(home and away combined) n recent matches of a team. All 18 rows: Homeaway
feature set adding features separately calculated for a team’s n/2 recent home
and away matches, respectively.

Feature Description

scrt,n(H) Home team’s average goals scored over n recent total matches

cont,n(H) Home team’s average goals conceded over n recent total matches

rt,n(H) Home team’s average normalized rank over n recent total matches

scrt,n(A) Away team’s average goals scored over n recent total matches

cont,n(A) Away team’s average goals conceded over n recent total matches

rt,n(A) Away team’s average normalized rank over n recent total matches

scrh,n/2(H) Home team’s average goals scored over n/2 recent home matches

conh,n/2(H) Home team’s average goals conceded over n/2 recent home matches

rh,n/2(H) Home team’s average normalized rank over n/2 recent home matches

scrh,n/2(A) Away team’s average goals scored over n/2 recent home matches

conh,n/2(A) Away team’s average goals conceded over n/2 recent home matches

rh,n/2(A) Away team’s average normalized rank over n/2 recent home matches

scra,n/2(H) Home team’s average goals scored over n/2 recent away matches

cona,n/2(H) Home team’s average goals conceded over n/2 recent away matches

ra,n/2(H) Home team’s average normalized rank over n/2 recent away matches

scra,n/2(A) Away team’s average goals scored over n/2 recent away matches

cona,n/2(A) Away team’s average goals conceded over n/2 recent away matches

ra,n/2(A) Away team’s average normalized rank over n/2 recent away matches

and three away matches correspond directly to the aggregated features over
n = 6 recent total matches. This is different for Man City, though (Table 3).
While the n = 6 recent total matches include the n/2 = 3 recent away matches
of Man City, Man City’s three recent home matches are not fully covered by
the n = 6 total matches (only 2 of these 3 matches are included). Therefore,
the total feature aggregates are not directly obtained from the home and away
aggregates.

Finally, the two feature sets (total, homeaway) used in our study depend
on the number n of recent matches used to compute the feature aggregate
(mean) values. In our modeling approach, n is viewed as a hyperparameter.
In order to find an optimal value for n, we have employed two procedures:
Pearson’s correlation and k-nearest neighbor (k-NN).

To determine the optimal n, we generated the full homeaway feature set
consisting of 18 features (Table 7) for each of the 51 super leagues from the
training set for all n-values from n = 9 to n = 100. This means, for each of
the 51 super leagues, we have generated 92 datasets, each containing 18 fea-
tures based on the corresponding n-value. In these datasets, the total features
are computed based on the n recent total, n/2 recent home and away team
performances, respectively. For each of the 51 collections of 92 n-dependent
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feature datasets, we determined the optimal values of n using two approaches
(Pearson, k-NN) as follows.

The Pearson correlation approach was realized first because of its con-
ceptual simplicity and computational efficiency. This meant that some of our
machine learning models could be completed and deployed in time for the
Challenge deadline. For each of the 51 super league training sets, each con-
sisting of 92 n-specific feature training sets, we computed the following two
“derived” features:

1. Difference of the average total goal difference: the home team’s average
total goal difference minus the away team’s average total goal difference,
∆gdit,n(HA) = gdit,n(H)− gdit,n(A).

2. Difference of the average total goals scored: the home team’s average total
goals scored minus the away team’s average total goals scored,∆scrt,n(HA) =
scrt,n(H)− scrt,n(A).

We chose these two features after some experimentation. The difference of
the (average) goal difference, ∆gdit,n(HA), captures the combined goal scoring
and conceding performance of the two teams facing off in a match. A positive
value is an indicator for the home team to score more goals than the away
team in the current match (i.e., a home win). A negative value suggests that
the away team will score more goals than the home team (i.e., an away win). A
value near zero points to the same number of goals scored by each team (i.e.,
a draw). The difference of the (average) goals scored, ∆scrt,n(HA), provides a
complementary and somewhat redundant view. However, it captures one of the
most essential performance dimensions of a soccer team, namely the ability to
score goals. Similar to ∆gdit,n(HA), a positive value favors a win of the home
and a negative value a win of the away team, respectively, and a value near
zero is an indicator for a draw. Notice, both derived features are expected to
be positively correlated with the observed goal difference in soccer matches.1

We exploit this positive correlation property in the Pearson approach to de-
termining an optimal recency value nPearson,L for a super league L. This is
done by computing the Pearson correlation of the sum of ∆gdit,n(HA) and
∆scrt,n(HA) with the observed goal difference ∆s(H,A) across each n-specific
datasets in a given league. For example, for the ENG1 super league, we deter-
mined the optimal value as nPearson(ENG1) = 60. Table 8 shows the statistics
of the n values for the 43 super leagues in the prediction set that were subject
to the final Challenge evaluation. Notice that for two super leagues (CHL1
and POR1), the maximum preset range value of n = 100 was reached.

The k-NN approach to determine the optimal n for each super league was
performed after the deadline of the Challenge. Here, we did not use derived
features but employed all six total features (top 6 rows in Table 7). Also, only
the 44 super leagues featuring in the Challenge prediction set were subject to

1 The goal difference of a single match, ∆s(H,A), is defined in an “asymmetric” way as
follows: ∆s(H,A) = s(H)− s(A), where s(H) and s(A) denote the observed goals scored by
the home (H) and away (A) team, respectively.
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this procedure, because the subsequent modeling phase was performed sepa-
rately for each super league. For each of the 44 super leagues, each of the 92
n-specific datasets was used to learn the optimal k in a leave-one-out cross-
validation procedure. All k-values from 3 to 350 were tested. The datasets
corresponding to the values of n that produced the lowest error (RPSavg and
RMSE, respectively) were selected for downstream modeling. This process re-
sulted in an optimal n and k value both for score and result prediction for
each super league. For example, for the ENG1 super league, we determined
the optimal value as nkNN,Score(ENG1) = 42 and nkNN,Result(ENG1) = 44,
respectively. The latter is illusrated in Figure 2. Table 8 shows some statistics
for the n values for both the result and score predictions derived with the
k-NN approach across all 44 super leagues. The maximum value of n = 100
was reached once for result (POR1 league) and for score (CHL1 league).

Table 8: Statistics from determining the optimal value for n using the Pearson
correlation and k-NN approaches.

Statistic nPearson nkNN,Result nkNN,Score

Minimum 13 13 15

Maximum 100 100 100

Mean 55.98 50.98 49.07

Standard deviation 25.32 24.44 23.06

The Challenge training set consists of 302 691 matches. After generating
the feature sets (homaway and total) separately for each of the 51 super leagues
in the training set, the total number of matches were reduced to 292 325. The
reason for this is that the time series of each team in a super league starts at
some point in all the seasons covered in a super league. This means that for
the first few matches of each team there is only a handful of recent matches
in the database. Thus, after the calculating the features for a super league,
we discard those matches in which one or both teams have less than 6 prior
matches. This leads to a loss 10 366 (3.43%) matches from the training set.

6 Overview of reference models and machine learning models

Using the feature datasets (total and homeaway) generated by the framework,
we have investigated various models for both Challenge tasks, that is, score
and result prediction. These models can be divided into two groups: machine
learning and reference models. The machine learning models are designated
by the prefix “DeepFoot”, which was our chosen team name. The machine
learning models are the following:

– DeepFoot-KNN and DeepFoot-KNN2 are k-nearest neighbor models based
on the total feature set (top 6 rows Table 7).



26 Daniel Berrar et al.

– DeepFoot-ANN refers to feedforward artificial neural networks based on
the total feature set.

– DeepFoot-OF128-18 and DeepFoot-OF128-6 models, which are based on
ordinal forests with 128 trees using the homeaway and the total feature
set, respectively (cf. Table 7);

– DeepFoot-NB6 and DeepFoot-NB18 models, which are based on a naive
Bayes classifier using the homeaway and the total feature set, respectively;

– DeepFoot-NB-183|816 models, which collectively denotes 816 different naive
Bayes classifiers that use all possible combinations of three features from
the homeaway feature set;

– DeepFoot-NB-184|3060 models, which collectively denotes 3060 different
naive Bayes classifiers that use all possible combinations of four features
from the homeaway feature set.

For each super league, the final DeepFoot-KNN models are based on the n-
specific datasets identified by the Pearson method. The final DeepFoot-KNN2
and DeepFoot-ANN models are based on the n-specific datasets identified by
the k-NN method. All other final models are based on the n-specific datasets
identified by the Pearson recency method. But instead of developing separate
models for each super league, these models combined the n-specific datasets
into a single large meta league dataset to develop a single model for each task.

We also developed three types of reference models:

– Null-1 and Null-N reference models are essentially null models based on
the distribution of result probabilities and average scores derived from the
original Challenge training set;

– Baseline-1 and Baseline-N reference models use statistics of some team
performance categories computed from the original Challenge training set;

– Bookmakers’ reference models are based on odds from multiple bookmakers
for scores and results of the matches in the prediction set.

Neither the null nor the baseline models use any form of optimization.
We first discuss the three types reference models that we implemented to

provide a baseline for the machine learning predictions. Then, we describe the
machine learning models that we developed.

7 Reference models

Based on the ENG1 matches with the IDs 148 and 154 from the prediction set,
Leeds vs. Liverpool, and Liverpool vs. Nottingham, we illustrate the various
predictions from the reference models in Table 9.

7.1 Null models

The null models Null-1 and Null-N derive their predictions on a league-by-
league basis. Null-1 considers only the last season (which corresponds to the
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Table 9: Examples of reference model predictions for two ENG1 matches.
s(H) and s(A) denote observed home/away goals; ŝ(H) and ŝ(A) predicted
home/away goals; Result the observed result; ŷ1, ŷ2 and ŷ3 the predicted prob-
abilities for win, draw and loss

Ref. Model Home Team (H) Away Team (A) s(H) s(A) ŝ(H) ŝ(A) Result ŷ1 ŷ2 ŷ3

Null-1 Liverpool Nottingham 3 2 2 1 win 0.48 0.24 0.28

Null-1 Leeds Liverpool 1 6 2 1 loss 0.48 0.24 0.28

Null-N Liverpool Nottingham 3 2 2 1 win 0.46 0.25 0.29

Null-N Leeds Liverpool 1 6 2 1 loss 0.46 0.25 0.29

Baseline-1 Liverpool Nottingham 3 2 2 1 win 0.45 0.27 0.27

Baseline-1 Leeds Liverpool 1 6 1 2 loss 0.27 0.25 0.47

Baseline-N Liverpool Nottingham 3 2 2 1 win 0.51 0.28 0.21

Baseline-N Leeds Liverpool 1 6 1 2 loss 0.29 0.23 0.48

Bookmakers Liverpool Nottingham 3 2 2 0 win 0.81 0.13 0.06

Bookmakers Leeds Liverpool 1 6 1 2 loss 0.22 0.22 0.55

season of the matches in the prediction set) of each league in the training set.
Null-N takes into account all seasons of a given league covered in the training
set. Theses choices, last and all seasons per league, are two obvious candidates.
We could have performed certain analyses to determine the optimal number of
seasons (or recent matches per team) to find some optimal prediction, but we
wanted to avoid any type of learning or optimization in the null and baseline
reference models. Each of the two null models performs the same type of
calculation to predict the scores and results in the prediction set, the only
difference is the number of seasons covered (last and all).

The score prediction null models simply take the average number for the
goals scored by the home and away team over the considered season(s) and
round these to the nearest integer. For example, for the Null-1 model, we con-
sider the most recent (incomplete) season of the ENG1 league in the training
set. In this season, the average goals scored by the home and away teams were
1.62 and 1.13, respectively. Rounding these to the next integers, we obtain 2
and 1, respectively. Thus, the Null-1 model predicts a 2-1 score for all ENG1
matches in the prediction set (see top two rows in Table 9). The Null-N model
works in a similar way, except that it processes all 23 ENG1 seasons covered in
the training set and obtains the average scores of 1.52 and 1.16, respectively.
Like the Null-1 model, the Null-N (after rounding) predicts a 2-1 home win
for all ENG1 matches in the prediction set (Table 9 rows 3 to 4).

Similar to the score prediction null models, the result prediction null models
simply determine the proportion of home wins, draws, and away wins in the
corresponding training set (last season for Null-1 and all seasons for Null-N
model) to estimate the win, draw and loss probabilities. For example, for all
ENG1 matches in the prediction set we get the following result prediction for
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win, draw, loss: (0.48, 0.24, 0.28) from the Null-1 and (0.46, 0.25, 0.29) from
the Null-N model, respectively (top 4 rows in Table 9).

7.2 Baseline models

Like the null models, the two baseline models we employed consider the last,
i.e., most recent season (Baseline-1), and all seasons (Baseline-N) separately
for each league in the training set. However, unlike the null models which
predict the same outcome for all prediction set matches within a given league,
the baseline models take into account the performances of each team to predict
the outcome of each match in the prediction set individually.

For score predictions, the baseline models determine the average goals
scored and conceded of each team in the corresponding training set and cal-
culate the average expected (predicted) score.

Let H denote the home team and A denote the away team facing off in
a match. Furthermore, let scrt(H) and scrt(A) denote the total number of
goals scored, and cont(H) and cont(A) the total number of goals conceded
(over the seasons covered in the training sets) by the home and away teams,
respectively. The terms nt(H) and nt(A) refer to the total number of matches
each team has played. Then, the predicted match score, expressed as the pair
(ŝ(H), ŝ(A)), is calculated using Equations 6 and 7. The notation be denotes
the rounding to the next integer.

ŝ(H) =

⌊
1

2

(
scrt(H)

nt(H)
+
cont(A)

nt(A)

)⌉
(6)

ŝ(A) =

⌊
1

2

(
cont(H)

nt(H)
+
scrt(A)

nt(A)

)⌉
(7)

Equations 6 and 7 apply to both Baseline-1 and Baseline-N. The predictions
that these models make are different because they are using different subsets
from the training set. Rows 5 to 8 in Table 9 illustrate the score predictions
of the two baseline models for two ENG1 league matches. Unlike the null
models, the baseline models do not predict the same score for all matches
within a league. Also, in the case of the two matches, both baseline models
agree on the identical final (rounded) score per match.

The result prediction of the baseline models follows a similar rationale as
the score prediction. Instead of looking at the goals, the baseline models for
result prediction calculate the proportions of the three possible result cat-
egories (win, draw, loss) based on the teams’ winning, drawing, and losing
performance in the corresponding league-specific training sets.

Let H and A refer to the home and away team, respectively, facing off in
a match. Further, let wint(H), drwt(H) and lost(H) denote the total number
of matches the home team, and wint(A), drwt(A) and lost(A) the total num-
ber of matches the away team has won, drawn and lost, respectively, within
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the considered seasons in the corresponding training set. The terms nt(H)
and nt(A) refer to the total number of matches of each team in the train-
ing set. Then, the predicted match result, expressed as the probability vector
(ŷ1, ŷ2, ŷ3), is calculated using Equations 8 to 10. In the equations ŷ1 denotes
the predicted probability for a win, ŷ2 a draw, and ŷ3 a loss.

ŷ1 =
1

2

(
wint(H)

nt(H)
+
lost(A)

nt(A)

)
(8)

ŷ2 =
1

2

(
drwt(H)

nt(H)
+
drwt(A)

nt(A)

)
(9)

ŷ3 =
1

2

(
lost(H)

nt(H)
+
wint(A)

nt(A)

)
(10)

Rows 5 to 8 in Table 9 illustrate the result predictions of the two baseline
models for two ENG1 league matches. The examples illustrate that unlike the
null models’ result predictions, the baseline models’ result predictions are not
identical for all matches within a given league. Also, the two baseline models
produce different result predictions in the case of the two example matches.

7.3 Bookmakers’ models

We investigated how predictions based on the odds that bookmakers provide
would fare in the two tasks of the Challenge. We use the term “bookmakers’
model” to refer to the score and result reference models derived from book-
maker odds.

The score predictions of the bookmakers’ score model are based on the
average decimal odds from multiple bookmakers.2 Typically, bookmakers cover
all scores involving up to five goals by each team. For example, for the ENG1
match between Man City against Liverpool on 01/04/2023, the five scores
with the lowest average decimal bookmaker odds and the derived implied
probabilities are depicted in Table 10.

For a given match, we identified the score with the lowest average deci-
mal odds (corresponding to the highest implied probability) as the predicted
score for that match. For example, for ENG1 match between Man City and
Liverpool, the lowest averaged decimal odds were 8.80 for a 1-1 score (top row
in Table 10). Thus, we determined the score of 1-1 as the prediction of the
bookmakers’ model.

2 Decimal odds are a common way to express odds in sports betting. They represent the
potential return on a bet for every unit staked, including the original stake. Decimal odds
are expressed as a decimal number greater than or equal to 1. For example, if one bets $10
on a 1-1 score for which the decimal odds of 8.80 are given, one receives $88 in case the
prediction is correct.
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Table 10: Top 5 lowest average decimal odds from at least 10 bookmakers for
ENG1 match Man City vs. Liverpool.

Score Average odds Implied probability # Bookmakers

1-1 8.80 0.1136 12

2-1 9.40 0.1064 12

1-0 10.00 0.1000 13

2-0 10.00 0.1000 11

3-1 14.00 0.0714 10

. . . . . . . . . . . .

For the bookmakers’ result predictions, we processed the average odds from
multiple bookmakers for the three result classes win, draw, and loss. The mean
number of bookmakers’ odds per match for the 714 matches in the final pre-
diction set were 13.11, with a standard deviation of 3.23. For 653 of the 714
matches, we had the decimal odds of at least 10 bookmakers. Thus, the odds
that we used are thought to be reasonably robust. Given the average book-
maker odds, oj , for the result category j, we normally obtain an estimate of the
“implied” probability, ŷj , as follows: ŷj = 1/oj , where the index j corresponds
to the result categories win, draw and loss, respectively. However, generally
probabilities derived in this way are deliberate overestimates to ensure that
the bookmakers make a profit. For example, the bookmakers’ average decimal
odds for the result of the match Leeds vs. Liverpool from the prediction set
were given as o1 = 4.37, o2 = 4.30 and o3 = 1.74. Based on these, the sum
of the implied probabilities would be approximately 1.04. To account for this
effect, and to ensure a probability sum of 1, we calculated the probabilities for
the three result classes by dividing the implied probability of each class by the
sum of all three implied probabilities.

For a given match, let oj denote the average decimal odds from multiple
bookmakers for the result, such that j = 1 corresponds to the result cate-
gory win, j = 2 to draw, and j = 3 to loss, respectively. Then the predicted
probability, ŷj , for the result category j is calculated using the Equation 11.

ŷj =
1/oj∑3

i=1(1/oi)
(11)

See rows 9 to 10 in Table 9 for an illustration of the score and result predic-
tions made by the baseline models, and Tables 13 and 14 on how these models
fared in terms of their prediction performance in the Challenge (Rank column)
and in relation to our machine learning models (RMSE and RPSavg columns).
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8 Machine learning models

8.1 k-nearest neighbor classifier

The k-nearest neighbor (k-NN) algorithm is one of the simplest and oldest
supervised learning algorithms (Cover and Hart, 1967; Wu et al., 2008; Berrar
et al., 2006). To classify an unknown test case, the k-NN identifies the k
nearest neighbors from the training set, that is, those k training cases that are
closest to the test case based on some measure of distance or similarity of the
predictive features. The main advantages of the k-NN include its conceptual
simplicity, its straightforward approach to determine both the score and result
prediction from the identified k nearest neighbors, and its approach to learning.
Essentially, learning in k-NN takes place when new cases with known outcomes
are added to the case or knowledge base. The final crucial step in using k-
NN is the optimization of the hyperparamter k. Depending on the size of
the data and the concrete tuning approach, this step can be quite expensive
computationally.

In this study, we produced two sets of k-NN models, DeepFoot-KNN and
DeepFoot-KNN2, each consisting of a score and result prediction model. Both
k-NN model sets use the total feature set produced in the feature generation
phase for each of the 51 super leagues in the Challenge training set. Because
both types of k-NN models as well as the ANN model are trained separately
for each super league, only the 44 datasets corresponding to the leagues in the
prediction set were needed.

For the DeepFoot-KNN models, which were completed in time for the Chal-
lenge deadline, the dataset with the optimal recency depth nPearson(L), cor-
responding to the 44 super leagues (L) in the prediction set, was used. For the
DeepFoot-KNN2 models, which were completed after the deadline, we used
the k-NN algorithm itself to determine two separate recency values for score
and result prediction, respectively (nkNN,Score(L) and nkNN,Result(L)).

For each of the 44 DeepFoot-KNN models, we had exactly one single train-
ing set with six total features, each corresponding to a single recency value
nPearson(L). For these n-specific training sets, we carried out a leave-one-out
cross-validation (LOOCV) procedure for all k-valuees from 3 to 350. These
k-limits were chosen after some exploratory experimentation. After this pro-
cess, we had one k-NN model for each of the 51 super leagues each made
of the following components: (1) A knowledge base or casebase consisting of
the n-specific feature dataset determined by the Pearson method. (2) Optimal
k-values, kScore(L) and kResult(L), for predicting match scores and results,
respectively. For example, for the ENG1 super league, we used the feature
training set corresponding to the recency value nPearson(ENG1) = 60 and
determined the two optimal k-values for the score and result model as follows:
kScore(ENG1) = 211 and kResult(ENG1) = 154.

For each of the 44 DeepFoot-KNN2 models, we employed LOOCV to deter-
mine both optimal n-values for both score and result prediction, nkNN,Score(L)
and nkNN,Result(L), while at the same time determining optimal k-values for
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score and result, kScore(L) and kResult(L). However, unlike in the DeepFoot-
KNN case, which is based on a single training set per super league, we applied
LOOCV for all k-values from 3 to 350 for each of the 92 training sets which
had been generated for recency values from n = 9 to n = 100. After this
procedure we had the following elements for each of the 44 super leagues:
(1) Two knowledge bases or casebases, each consisting of the n-specific fea-
ture dataset determined by k-NN for score and result prediction, respectively,
based on optimal values of nkNN,ScoreL and nkNN,Result(L). 2) Optimal k-
values, kScore(L) and kResult(L), for predicting match scores and results, re-
spectively. It took approximately two weeks to complete this process for all 44
super leagues on a high-spec PC. For example, for the ENG1 super league, we
obtained the following results: (1) Recency values: nkNN,Score(ENG1) = 42
and nkNN,Result(ENG1) = 44 (for the latter, see also Figure 2). (2) Optimal
k-values: kScore(ENG1) = 59 and kResult(ENG1) = 298.

Since the procedure used for the DeepFoot-KNN2 models is computation-
ally very expensive, the DeepFoot-KNN2 models were not completed in time
for the Challenge deadline.

Tables 13 and 14 show the final prediction performance of the k-NN mod-
els. We used the K-D algorithm implemented in the R package Fast Nearest
Neighbor Search Algorithms and Applications (FNN) to implement the k-NN
models.

8.2 Neural networks

Artificial neural networks (ANNs) are a fundamental class of machine learning
models. One common type of ANN is the feedforward neural network, also re-
ferred to as multilayer perceptron (Rumelhart et al., 1986; Hornik et al., 1989),
which is widely used due to its capacity to approximate complex functions,
making it suitable for tasks like pattern recognition, classification, regression,
and optimization.

We developed two ANN models tailored specifically to the score and result
prediction tasks. The models were trained separately for each of the 44 super
leagues of the prediction set based on the total feature set consisting of 6
features (top part of Table 7).

The architecture of the ANN score model has 6 nodes in the input layer, 2
in the single hidden layer, and 2 in the output layer. Each node in the hidden
layer receives 6 inputs from the input layer plus one input from a bias node x0.
The 2 nodes in the output layer receive their inputs from the outputs of the
corresponding hidden layer. The 2 output layer nodes represent the decimal
score prediction which are rounded to the next integer after the model training
is complete.

Let the vector (x0, x1, ..., x6)|xi ∈ R+ define the bias node (x0 = 1) and the
six input nodes (x1, ..., x6) of the ANN score model, such that (x1, ..., x6) corre-
spond to the six total features. Further, let the vector (w0,H , w1,H , ..., w6,H)|wi,H ∈
R and aH ∈ R+ denote the parameters of the hidden node corresponding to
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the predicted home score, and the vector (w0,A, w1,A, ..., w6,A)|wi,A ∈ R and
aA ∈ R+ to the predicted away score, respectively. Then, the predicted deci-
mal home ŝ(H) ∈ R+ and away ŝ(A) ∈ R+ scores of a match are calculated
using the activation functions shown in Equations 12 and 13.

ŝ(H) =
aH

1 + exp

(
−

n=6∑
i=0

wi,H xi

) (12)

ŝ(A) =
aA

1 + exp

(
−

n=6∑
i=0

wi,A xi

) (13)

The values of the six inputs in Equations 12 and 13 refer to the six to-
tal features shown in the top part of Table 7. These features always assume
positive values including zero. Similarly, the parameters aH and aA represent
the maximal values for the goals scored and therefore are limited to positive
numbers including zero.

The ANN score model predicts a match score consisting of two positive
decimal numbers including zero. These decimal scores are used in the train-
ing phase to optimize the model parameters using the RMSE criterion. Once
training is complete, the final predicted scores are obtained by rounding the
decimal scores to the next integer. Thus, the final predicted score is defined
as ŝ(H) := bŝ(H)e and ŝ(A) := bŝ(A)e .

The result ANN model architecture is similar to the score ANN model but
uses 3 nodes in the hidden layer and output layer, respectively, each corre-
sponding to one of the three result categories. Furthermore, the three outputs
are subject to a softmax conversion to scale the outputs to a proper probabil-
ity vector. In the training phase, the probability vector for result prediction
is evaluated against the observed result, which is represented as a hotvec-
tor, using the RPS scoring rule (Constantinou and Fenton, 2012) defined by
Equation 2.

Let the vector (x0, x1, ..., x6)|xi ∈ R+ define the bias node (x0 = 1) and the
six input nodes (x1, ..., x6) of the ANN result model, such that (x1, ..., x6) cor-
respond to the six total features. Further, let the vector (w0,1, w1,1, ..., w6,1)|wi,j ∈
R and aR ∈ R denote the parameters of a hidden node corresponding to the
result category j, such that j = 1 denotes the result category win, j = 2 draw,
and j = 3 loss, respectively. Then, the predicted probability, ŷj , for the result
category j is calculated using Equations 14 and 15.
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hj =
aj

1 + exp

(
−

6∑
i=0

wi,j xi

) (14)

ŷj =
exp(hj)
3∑

i=1

exp(hi)

(15)

We adopted a straightforward “ensemble parameter averaging” approach
to train the ANN models for score and result prediction. One of our main
motivations for adopting this approach was the high variance of the test er-
ror in cross-validation. This technique is conceptually different from bagging
(Breiman, 1996). In bagging, multiple independent base models are trained,
and their predictions are averaged or voted upon. In model averaging, the pa-
rameters of the models themselves are averaged to create a single final model
(Wortsman et al., 2022). The advantage of this approach is its conceptual sim-
plicity and the expectation that the final model achieves a good bias-variance
tradeoff. Another advantage is that there is no final model learning phase
based on the entire dataset, as it would be the case in a conventional n-fold
cross-validation procedure. The final model is calculated from the average of
the parameters from each individual model training fold.

Our approach to model training and validation was as follows. For each
of the 44 super leagues featuring in the prediction set, we performed the four
main steps based on the same ANN model architecture for score and result
prediction, respectively.

Step 1: Repeat Steps 1a to 1c ten times.
Step 1a: Split the data randomly into training and test set.
Step 1b: Train model until at least one convergence criterion is met.
Step 1c: Record train and test errors and individual model parameters.
Step 2: Calculate average training and test errors.
Step 3: Determine final parameters as average over 10-fold training.
Step 4: Use final model to predict prediction set matches.

Step 1a makes sure that each of the ten individual model training runs had
a different setup in terms of training and test data. In addition, all model
weights were initialized randomly in the line with the parameter constraints
mentioned above.

Step 1b trains the model based on a random split of the entire dataset into
training and test set using a split ratio of 0.85/0.15. We implemented the back-
propagation training algorithm of our ANN models as a stochastic gradient
descent (SGD) optimization procedure (Rumelhart et al., 1986; Tian et al.,
2023). The SGD method computes the gradient of the cost with respect to the
model’s output (score or result prediction), which essentially represents how
much the output would need to change to minimize the error. This gradient of
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the cost is propagated backward through the network and used to update each
ANN model parameters. SGD performs an update of each model parameter
θj for each training instance using the following update rule:

θj := θj − α
∂

∂θj
J(θ;x(i); y(i)) (16)

where θj represents a model parameter, α is the step size or learning rate, and
J is the cost function. Unlike batch and mini-batch gradient descent, SGD up-
dates the weights using only a single training example in each iteration, hence
the notation x(i) and y(i) denoting the predictors and observed outcome of in-
stance i, respectively. The learning rate hyperparameter in our implementation
was fixed to the value α = 0.25.

As the algorithm sweeps through the training set, it performs the parameter
update for each training sample. Several passes can be made over the training
set until the algorithm converges. After some experimentation, we employed
two convergence criteria; the training was terminated once one of the two
criteria was met. Criterion 1: stop if for 10 iterations the model error has
not decreased. Criterion 2: stop after a maximum of 200 iterations has been
reached. Most of the time, criterion 1 was reached first.

Step 1c memorizes the optimized parameters of each iteration and the rele-
vant overall model errors. For the score model, the optimized RMSE based on
decimal scores was kept for both training and test sets, as well as the RMSE
resulting after rounding of the decimal scores to the next integer for the test
set. For the result model, the RPSavg for both training and test sets at each
iteration was memorized.

In Step 2, the average errors over the ten training/test runs were computed
and stored. Step 3 simply calculates the average of all parameters obtained in
the individual runs and stores these. These parameter averages constitute the
parameters of the final model (Step 4).

8.3 Ordinal forests

Ordinal forests are a special type of regression forests in which the ordinal
class variable is treated as a continuous variable (Hornung, 2020). In contrast
to regression trees (Breiman, 2001), the class values are replaced by score val-
ues that maximize the out-of-bag prediction performance. Training an ordinal
forest involves the following steps. First, several thousands of candidate score
sets are generated by repeated random sampling. For each score set, a regres-
sion forest is fitted for the class values of the target class, and the out-of-bag
prediction error is calculated based on a user-defined performance metric. Sec-
ond, the final score is calculated based on those score sets that resulted in the
best out-of-bag performance. Finally, using the final score set for the target
class values, a regression forest is fitted. In our ordinal forests models, we used
the RPS as the cost function (Epstein, 1969; Constantinou and Fenton, 2012).
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We chose ordinal forests for the following two reasons. First, regression
trees, or random forests more generally, have shown remarkable performance
across a wide range of applications with tabular data, for which they generally
outperform even deep learning (Grinsztajn et al., 2022). Tree ensembles are
therefore one of the state-of-the-art algorithms for classification and regression
tasks. Second, we required an algorithm that can deal with ordinal class values.
In ordinal classification problems, misclassifications can be more or less severe.
For example, if the possible class labels are “win”, “draw”, and “loss”, mis-
classifying a real “win” as “draw” is obviously less severe than misclassifying
it as “loss”.

To train the ordinal forest models, we used the feature training set (consist-
ing of 18 homeaway features) based on the optimal n-value from the Pearson
method. This data set contains n = 292 325 matches. We pre-processed the
data as follows. First, the score was converted into a discrete class label. This
resulted in a total of 85 discrete classes, including some extremely rare classes,
such as 0-13, which occurred only once. We decided to exclude such extremely
unlikely events, as our available computing hardware was insufficient for an
effective training of ordinal forests with that many classes. We discarded all
matches whose outcomes occurred in less than 293 of 292 325 matches or 0.1%,
leaving 289 960 matches with 32 discrete outcomes for further analysis. Fig-
ure 1a shows a frequency plot of the classes. By far the most frequent classes
are 1-1 and 1-0, making up almost one quarter of all outcomes.

The prediction of match outcomes is of an ordinal nature; clearly, predicting
a real 1-1 outcome as 1-0 is better than predicting it as 0-1. Our next problem
was therefore to find an appropriate encoding of the scores that adequately
reflects the ordinal relation. Finding such an encoding turned out to be more
difficult than expected, as there exists no unique ordering of score classes that
is consistent with soccer domain knowledge. Among the filtered 32 classes, 6-0
and 0-5 are as far apart as possible, and therefore it makes sense to encode
them as 1 and 32. But it is not obvious how to order the outcomes between
those two extremes. We eventually decided to encode the outcomes as shown
in Figure 1b, as this encoding represents a meaningful ordinal relation.

From the feature training set, we then randomly sampled 30 000 matches
(approximately 10%) for the test set and used the remaining 259 960 matches
for the training set. The ordinal forest was trained with nscore = 100 score
sets, from which the 10 best were then selected for the score set to train the
final regression forest. For each score set, a regression forest with ntree,1 = 10
regression trees was built. Using the optimized score set, a larger regression
forest with ntree,2 = 128 trees was fitted to the training set and then applied
to the test set. Training an ordinal forest with these parameters took more
than 12 hours on a standard PC with 32 GB RAM and seven Intel i7-7700T
CPUs. A larger number of trees generally improves model stability, but more
than 128 trees led to system crashes. For the Challenge, we therefore did not
perform any further fine-tuning of the model parameters. We used the six total
features (cf. Table 7, top six rows) for DeepFoot-OF128-6 and 18 homeaway
features for DeepFoot-OF128-18.
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Fig. 1: (a) Frequency of the 32 filtered match score in the Challenge training
set. (b) Encoding of the outcomes for ordinal classification.

For each match in the test set, the ordinal forest models produce probabil-
ities for each of the 32 outcomes, which were used to address score and result
prediction. The prediction of exact scores was based on the maximum class
probability. For example, if class 11 achieved the highest probability, then the
outcome 2-0 was predicted (cf. Figure 1b). For the prediction of match results
in terms of probabilities of win, draw, and loss, the calculated probabilities
were simply added accordingly: the probability of win is the sum of all proba-
bilities for the outcomes 6-0, 5-0, 6-1, ..., 4-3; the probability of draw is the sum
of all probabilities for the outcomes 0-0, 1-1, 2-2, and 3-3; and the probability
of loss is the sum of all probabilities for the outcomes 3-4, 2-3, 1-2, ..., 0-5.
This approach, however, can lead to predictions that at first seem inconsistent.
For example, the match Forest Green vs. York City (ENG5 league, played on
02/12/2006) ended 0-1. The ordinal forest produced the highest class proba-
bility of 0.1051 for the outcome 0-0, a draw. However, the probabilities of win,
draw, and loss are 0.2603, 0.2434, and 0.4963, respectively—the probability of
loss is the largest, although 0-0 is the most probable outcome.
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Table 11: Results of the ordinal forests on the tests set and prediction set.

Test Set Prediction Set

RMSE RPSavg RMSE RPSavg

DeepFoot-OF128-6 1.8261 0.2140 1.8805 0.2186

DeepFoot-OF128-18 1.7681 0.2117 1.8277 0.2150

Based on the predictions of the test set, the performance measures RMSE
and RPSavg were then calculated and used as estimates of the performance
on the prediction set. Then, to predict the matches of the prediction set, the
ordinal forest was trained on the entire feature training set consisting of 292 325
matches. Table 11 shows the results on the test set and the prediction set.

DeepFoot-OF128-18 performed slightly better than DeepFoot-OF128-6 on
both tasks and both the test set and the prediction set.

8.4 Naive Bayes classifier

The naive Bayes classifier is based on Bayes’ theorem and belongs to the family
of generative classifiers (Berrar, 2018). By making the naive assumption that
the predictive features are statistically independent from each other, the naive
Bayes classifier calculates a class posterior probability for each case according
to Equation 17,

P(yj |xi) =

∏p
k=1 P(xk|yj)P(yj)

P(xi)
(17)

where xi denotes a case consisting of p predictive features, i.e., xi = (xi1, xi2, ..., xip).
Each case is assumed to belong to exactly one class y ∈ {y1, y2, ..., yc}. The
predicted class is the maximum a posteriori class, and it is calculated as ŷ for
the case xi as

ŷ = argmax
yj

p∏
k=1

P(xk|yj)P(yj) (18)

We included the naive Bayes classifier because it is one of the oldest
workhorses of machine learning and has shown remarkable performance com-
pared to more complex models in a range of applications (Webb et al., 2005;
Berrar, 2018), even the naive assumption does not hold; clearly, for our feature
sets, this is the case.

The naive Bayes classifier was built using the same pre-processed data
that we used for the ordinal forests (Section 8.3). Table 12 shows the results
on the test set and the prediction set. Only the results of DeepFoot-NB-6
were submitted to the Challenge, as DeepFoot-NB-18 could not be completed
before the Challenge deadline.
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After the Challenge deadline, we performed further experiments as follows.
For the naive Bayes classifier, the only tuning parameter is the number of
features. Therefore, from the set of p = 18 predictive features, we selected all(
18
3

)
= 816 combinations of 3 features and built 816 naive Bayes classifiers,

collectively referred to as DeepFoot-NB-183|816, which we then applied to the
test set. From this set of 816 models, the model with the lowest RMSE was
selected for score prediction, and the model with the lowest average RPS was
selected for result prediction. We proceeded analogously for all combinations
of four features and built and applied

(
18
4

)
= 3060 models, collectively referred

to as DeepFoot-NB-184|3060. From the set of 3060 naive Bayes models, the two
models with lowest average RPS and RMSE on the test set were selected and
then used to predict the matches in the prediction set.

Table 12: Results of the naive Bayes classifier on test and prediction set. From
DeepFoot-NB-183|816 and DeepFoot-NB-184|3060, the models that performed
best on the test set were selected and then applied to the prediction set. Models
marked by * were completed after the Challenge deadline.

Test Set Prediction Set

RMSE RPSavg RMSE RPSavg

DeepFoot-NB-6 1.7798 0.2183 1.8406 0.2247

DeepFoot-NB-18* 2.1309 0.2546 2.2573 0.2689

DeepFoot-NB-183|816* 1.6895 0.2150 1.7461 0.2155

DeepFoot-NB-184|3060* 1.7023 0.2137 1.7417 0.2159

Using only 3 to 4 predictive features improves the performance of the naive
Bayes classifier considerably, compared to the performance based on the full
set of 18 features. This shows that the computational costs due to the ex-
haustive search are justified. The worst performance is achieved by the naive
Bayes classifier using all 18 features. This result is consistent with our theoret-
ical understanding of the naive Bayes classifier: including correlated features
generally leads to a performance degradation.

9 Results

Table 13 shows the results of our machine learning models and reference models
for Task 1, the prediction of exact scores. Table 14 shows the corresponding re-
sults for Task 2, the prediction of results in terms of probabilities for the result
categories win, draw, and loss. The columns “Feature Set” and “# Features”
describe the feature sets that the models were trained on and the correspond-
ing number of features, respectively. The column labeled “League” relates to
the league/season combination found in the training set. Recall, each of the
51 leagues featuring in the Challenge training set was processed separately
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in the feature generation phase by pooling all seasons within the league into
a super league. In the model generation phase, there are two basic options
for how to use these 51 separate super league feature datasets: (1) Construct
the models separately for each of 44 leagues featuring in the prediction set,
each corresponding to one of the 51 super league datasets. This means that
we discard the data from 7 of the 51 super leagues in the Challenge training
set. In Tables 13 and 14, this situation relates to the value Super League in the
“League” column. (2) Merge all 51 super league datasets into a single dataset
referred to as “meta league” (corresponding to the Meta League entries in the
“League” column). This option yields a much larger training set and exploits
the data from all 51 leagues, even though seven of these do not occur in the
prediction set. Finally, the value League in the “League” column occurs only
for the reference models Null-1 and Baseline-1. Here, the baseline predictions
are performed separately for each of the 44 leagues featuring in the prediction
set but only the data of the last season of each league (corresponding to the
season in which the prediction set matches occur) was used. Clearly, the lat-
ter approach is very limited in the number of data points that are exploited.
Finally, the column “Rank” shows the rank that our models achieved in the
leader board that contains all valid submissions to the 2023 Soccer Prediction
Challenge.

Overall, our model DeepFoot-KNN2 performed the best for the score pre-
diction Task 1, whereas DeepFoot-NB-18 performed the worst. On Task 2, the
overall best performance was achieved by the bookmakers’ model, and the
worst overall performance was achieved again by DeepFoot-NB-18. Surpris-
ingly, our reference models performed remarkably well on Task 1 where they
achieved the 7th, 8th, 9th, and 10th rank.

10 Discussion

Soccer outcome prediction has become a challenging but fascinating new area
for machine learning research and development. Here, we presented a new
data- and knowledge-driven framework for building machine learning models
from readily available soccer data to predict match outcomes. We used our
framework to build predictive models for the 2023 Soccer Prediction Challenge.

In Task 1 of the Challenge, prediction of exact scores, our k-nearest neigh-
bor model DeepFoot-KNN2 achieved the top performance. Furthermore, DeepFoot-
KNN and DeepFoot-ANN were also ranked very high on 3rd and 4th place,
respectively. These three models are all based on the super league approach,
i.e., for each of the 44 leagues featuring in the prediction set, the data of
all seasons of the league were merged into one dataset an processed as if it
was a single continuous season. The entire feature engineering and model de-
velopment process was carried out separately for each super league dataset.
All three models used the total feature set consisting of six features based
on the combination of home and away matches. Unlike DeepFoot-KNN and
DeepFoot-ANN, which are based on the optimal recency value derived with
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Table 13: The score prediction (Challenge Task 1) models sorted by the leader
board position (Rank) among all Challenge participants. Models marked by
the star symbol (*) were completed after the Challenge deadline. In total, 26
models are ranked.

Team RMSE League Feature Set # Features Rank

DeepFoot-KNN2* 1.6227 Super League Total 6 1

DeepFoot-KNN 1.6339 Super League Total 6 3

DeepFoot-ANN* 1.6479 Super League Total 6 4

Baseline-N 1.6653 Super League n/a n/a 7

Baseline-1 1.6682 League n/a n/a 8

Null-1 1.6757 League n/a n/a 9

Null-N 1.6862 Super League n/a n/a 10

DeepFoot-NB-184|3060* 1.7417 Meta League Homeaway 4 13

Bookmakers* 1.7433 n/a n/a n/a 14

DeepFoot-NB-183|816* 1.7461 Meta League Homeaway 3 15

DeepFoot-OF128-18 1.8277 Meta League Homeaway 18 19

DeepFoot-NB-6 1.8406 Meta League Total 6 20

DeepFoot-OF128-6 1.8805 Meta League Total 6 23

DeepFoot-NB-18* 2.2573 Meta League Total 6 26

Table 14: The result prediction (Challenge Task 2) models sorted by the leader
board position (Rank) among all Challenge participants. Models marked by
the star symbol (*) were completed after the Challenge deadline. In total, 28
models are ranked.

Team RPSavg League Fature Set # Features Rank

Bookmakers 0.2063 n/a n/a n/a 1

DeepFoot-ANN * 0.2113 Super League Total 6 4

DeepFoot-KNN 0.2117 Super League Total 6 6

DeepFoot-KNN2 * 0.2122 Super League Total 6 7

DeepFoot-OF128-18 0.2150 Meta League Homeaway 18 13

DeepFoot-NB-183|816* 0.2155 Meta League Homeaway 3 14

DeepFoot-NB-184|3060* 0.2159 Meta League Homeaway 4 16

DeepFoot-OF128-6 0.2186 Meta League Total 6 19

Baseline-1 0.2199 League n/a n/a 21

Baseline-N 0.2234 Super League n/a n/a 23

Null-N 0.2238 Super League n/a n/a 24

Null-1 0.2242 League n/a n/a 25

DeepFoot-NB6 0.2247 Meta League Total 6 26

DeepFoot-NB18* 0.2689 Meta League Total 18 28

the Pearson method, DeepFoot-KNN2 is based on the k-NN approach for de-
termining the optimal recency hyperparamter n.
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In Task 2 of the Challenge (prediction of results), the three models that
featured in the top 4 in the score prediction task did also reasonably well:
DeepFoot-ANN, DeepFoot-KNN, and DeepFoot-KNN2 were ranked 4th, 6th
and 7th, respectively. Surprisingly, DeepFoot-KNN fared a little bit better
than DeepFoot-KNN2 in this task. The naive Bayes classifier using the en-
tire homeaway feature set performed worst in both tasks. The main reason is
probably that naive Bayes does not take into account the ordinal relation of
the classes.

We expected that ordinal forests would perform much better in the 2023
Soccer Prediction Challenge, for the following reasons. Ordinal forests are
ensembles of regression trees, which have shown superior performance in a
range of applications with tabular training data, even when compared to deep
learning (Grinsztajn et al., 2022). One possible explanation for the relatively
poor performance might be our chosen encoding of scores as discrete classes (cf.
Figure 1b). As ordinal forests were trained with the RPS as objective function,
it is crucial that the encoding preserves the relative ordering of similar classes.
For example, the scores 6-0 and 0-5 are the two most opposite scores in the
considered training set of 32 outcomes. Encoding these scores as 1 and 32
makes sense, as it maximizes the distance between these classes. However, there
exists no obviously “correct” ordering of the scores in-between; for example,
how should the scores 2-5, 1-4, and 0-3 be ordered and encoded? The goal
difference is 3 in each example, but it is not clear which result is a more decisive
victory for the away team. There is no total order relation between scores. In
our ongoing research, we are working on a ranking method for soccer scores.
Another possible explanation for the relatively poor performance of ordinal
forests is that we discarded those matches with extremely unlikely scores,
that is, scores that occurred with a frequency of 0.1% or less, such as 0-7.
This filtering discarded 2365 (0.8%) matches with 53 unlikely scores from the
training set; hence, the ordinal forest model was unable to predict extremely
rare outcomes. The filtering was necessary, however, as training with all 85
classes was not computationally possible with our available hardware.

The super league approach to feature engineering developed in this study
seems to contradict common soccer domain knowledge. Yet, it led to highly
competitive results in both Challenge tasks. A central element of the super
league approach revolves around the recency value n, which determines how
many recent team performances should be taken into account to characterize
a team prior to a match. Common soccer domain knowledge would suggest
that perhaps the recent 5 to 15 matches should be considered. However, the
results that we obtained paint a counter-intuitive picture. To illustrate this,
consider Figure 2.

Figure 2 illustrates the result from a leave-one-out cross-validation of the
result prediction model with the k-NN model for all n values from 9 to 100. The
triangles indicate the optimal n-values. For example, for the FRA3 league, the
optimal recency value was nFRA3 = 18, whereas for GER1 it was nGER1 = 64.
It is rather astonishing that for GER1 the recent 64 games of a team would



Data- and Knowledge-Driven Framework for Soccer Match Outcome Prediction 43

20 40 60 80 100

0
.2

0
0

0
.2

0
5

0
.2

1
0

0
.2

1
5

0
.2

2
0

RPS: nENG1=44, nFRA3=18, nGER1=64, n44 Leagues=40

n

R
P

S

ENG1

FRA3

GER1

44 Leagues

Fig. 2: Illustration of the dependency of the recency value n for result predic-
tion (RPS) for n = 9, 10, ..., 100. ENG1, FRA3, and GER1 refer to the English
Premier League, the French National League, and the German Bundeliga, re-
spectively. 44 Leagues shows the average for the 44 leagues in the Challenge
prediction set.

yield the optimal depth to calculate the features. For GER1, this means that
almost two complete seasons covering a period of nearly two years are covered.

Figure 2 also shows how the values for n vary across leagues. The average
n-value for the 44 leagues from the prediction set is 40. Notice that this value
is different from the mean value of 50.98 in the nkNN,Result column of Table 8.
First, the nkNN,Result values in the table are based on all 51 leagues found
in the training set. Second, the data for 44 leagues shown in Figure 2 are
averaging at each n-value the RPSavg error. Given that the average league size
of the 44 leagues of the prediction set is 17.68 teams, each team, on average,
would play 33.36 matches per season. This means that, on average, the best
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n-value is found well beyond a season’s worth of matches played by each team.
This result was unexpected.

Because of the surprising but promising results we obtained with the super
league approach to feature engineering and model development, we will further
investigate this in the future based on datasets that provide more data on a
soccer match, including corners, fouls, shots, yelow/red cards, and so on.

Another surprising result from our study relates to the overall predictive
performance based on the total and homeaway features depicted in Tables 13
and 14. Since the homeaway features explicitly capture the home advantage
and include the six total features, one would have expected that this feature
set leads to a superior performance, but this was not the case. We have no
explanation for this observation. In our future work, we will further investigate
this finding by using a wider range of machine learning models.

Another surprising finding of our study is the relative good performance
of our simple null models and baseline models. These models outperformed a
number of far more complex machine learning models and the bookmakers’
model in the score prediction task (Task1, Table 13) and also a small number of
machine learning models in the result prediction task (Task 2, Table 14). This
is quite surprising, given that the null and baseline models are relatively sim-
plistic, compared to the machine learning models. We did not even give these
models the chance to benefit from the recency processing of the data, which
we used for the machine learning models. It is quite possible that their per-
formances would have been even better if we had chosen the null and baseline
models based on an optimal n-value. There might be a theoretical explanation
for this unexpected observation. It is often tacitly assumed that there exists
a trade-off between model complexity and predictive performance: the more
complex a model is, the higher its expected predictive performance, and vice
versa (Rudin, 2019). For a given task, however, there might be countless mod-
els whose performances do not differ by a lot, an observation for which Leo
Breiman coined the term “Rashomon effect” (Breiman, 2001). Among the set
of models with a similar performance, there might be some that are surprisingly
simple. There are numerous examples in other domains, for example, bioinfor-
matics (Dudoit and Fridlyand, 2002; Berrar et al., 2006), which illustrate that
complex models are indeed not always better (Hand, 2006; Gosiewska et al.,
2021).

The bookmakers’ model came out top in the result prediction task (Task 2).
This was not unexpected, as bookmakers have access to comprehensive match
datasets and are able to tap into the wisdom of very large crowds of people—
some with profound understanding of soccer—who bet on the outcomes of
matches through the betting platforms. Given the minimal information about
matches that we used in our study, one could have expected that the margin
between the bookmakers’ model and the machine learning models would be
even much higher, but it wasn’t—and this is rather motivating for machine
learning researchers.

Considering that the bookmakers’ model was the clear winner among all
Challenge participants for the result prediction task, it is surprising that the



Data- and Knowledge-Driven Framework for Soccer Match Outcome Prediction 45

bookmakers’ model did not fare too well in the score prediction task. It is diffi-
cult to say what the reasons for this observation might be. For the bookmakers’
score predictions, we only had the odds for the score with the lowest odd value,
so we could not determine if the best score prediction models would have been
profitable if their predictions had been to bet on the prediction set matches. As
some of our score prediction models fared well against the bookmakers’ score
model, one might ask the question: “Would one have made a profit by betting
money on the scores predicted by our models for the 736 matches from the
prediction set?” The answer is: “We do not know.” The reason is that prior
to the Challenge deadline, we determined the bookmakers’ score predictions
for each of the 736 matches by identifying only the single score for which the
bookmakers offered the lowest odds, which corresponds to the highest implied
probability. The odds of all other scores of each match offered by the book-
makers were not collected. After the 736 matches had been completed, the
odds were no longer available, so we do not know what the odds for the 736
observed scores were. Therefore, we could not test if the predictions of any of
our top-performing score models could have been used in a profitable way in
sport betting.

11 Conclusions

Soccer match outcome prediction offers a formidable challenge for machine
learning. Despite the seeming unpredictability of match outcomes, our research
has demonstrated that it is possible to use readily available match data and
machine learning to build predictive models with remarkable performance. One
of our main insights is that the key to successful predictions lies in how well
domain knowledge can be formalized and included in the modeling process.
Our data- and knowledge-driven framework is an important novel contribution
to the burgeoning field of machine learning in soccer.
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