
1

1

DATA MINING AND MACHINE LEARNING
METHODS FOR MICROARRAY ANALYSIS

Werner Dubitzky, Martin Granzow, Daniel Berrar
German Cancer Research Center, Intelligent Bioinformatics Systems Group,
Heidelberg, Germany

Abstract: Microarray experiments provide the scientific community with huge amounts
of data. Without appropriate methodologies and tools significant information
and knowledge hidden in these data may not be discovered. Therefore, there is
a need for methods capable of handling and exploring large data sets. The field
of data mining and machine learning provides a wealth of methodologies and
tools for analyzing large data sets. We review two classical machine learning
techniques suitable for microarray analysis, namely decision trees and
artificial neural networks. We outline how these approaches fit into a wider
data mining framework.

Key words: Microarray analysis, decision tree, artificial neural network, data mining,
machine learning

INTRODUCTION

The wealth of microarray data now available poses enormous challenges
such as the analysis of images generated by microarray experiments [Chen et
al., 1998], the study of the variability of gene expression patterns [Newton et
al., 2001], and the reverse engineering of biochemical and signaling
networks from microarray data [Voit & Radivoyevitch, 2000]. At present,
most microarray analyses are concerned with (i) cluster analysis: the
identification of new subgroups or classes of some biological entity (e.g.,
tumors), or (ii) discriminant analysis: the classification of entities into
known classes (e.g., diseases, therapies). A typical characteristic of
microarray data is the large number of variables (e.g., genes) relative to the
number of observations (e.g., samples). For example, a study from 1999
analyzed gene expression data from 72 leukemia patients for class discovery



2 Methods of Microarray Data Analysis

(cluster analysis) and prediction (discriminant analysis) based on 7,070
genes [Golub et al., 1999]. Both the number of variables and the number of
observations are expected to grow in the future.

Within the context of microarray data analysis, we outline data mining
as a framework comprising methodologies and tools for analyzing large data
sets including microarray data. We focus our discussion on two popular
machine learning techniques for molecular classification of cancer and
identification of potentially relevant genes. The techniques in question are
decision trees and artificial neural networks [Dayhoff, 1996]. Decision trees
belong to the class of so-called symbolic methods. The attractiveness of
decision trees is largely due to their ability to express the learned models as
symbolic rules that can readily be understood by humans. Neural network
approaches, on the other hand, represent their learned knowledge as patterns
of connectivity that exist among the nodes of the network. This type of
knowledge representation is sometimes called subsymbolic, and is not
readily intelligible to humans.

Many implementations of decision trees and neural networks exist. To
make our discussion more concrete, we limit ourselves to two of the most
popular algorithms currently available in proprietary machine learning and
data mining software: the decision tree algorithm C5.0 [Quinlan & Quinlan,
1997] and the well-known backpropagation algorithm for neural networks
[Witten & Frank, 2000; Berry & Linoff, 1997; Dayhoff, 1996]. In [Dubitzky
et al., 2000] we have applied these two algorithms in a comparative study
based on the previously mentioned work by Golub and colleagues [Golub et
al., 1999]. The results our study are also presented in some detail within this
volume.

Our key motivation is to contribute to the understanding of the
underlying techniques, their benefits and their limitations within the context
of microarray analysis. Besides delving into detail with regard to neural nets
and decision trees, we also briefly discuss cross-validation and multiple-
model strategies such as boosting. This entire discussion should not be seen
as an exhaustive or complete treatment of these techniques.

DATA MINING AND GENERAL MOTIVATION

We are generally motivated by developing, validating, and applying data
warehousing and data mining methodology and tools to life science
problems. Therefore, we view the presented work as part of a wider
framework. With the data analysis problem at hand in mind, we briefly
outline related aspects of this framework.



Dubitzky et al. 3

To adequately organize and interpret the deluge of information generated
by high-throughput technologies in molecular biology, the adaptation of
existing and the development of new computational methodologies and tools
are required. The principal approach to analyzing and interpreting biological
data is to abstract them into logical structures that support and incrementally
develop a more general conceptual framework for characterizing, explaining,
and predicting processes in living systems. Among other critical
technologies (e.g., agents, networking, knowledge-based systems) data
mining is certainly one important element in the sought-after new
computational framework.

Data mining is concerned with the automatic or semiautomatic
exploration and analysis of large quantities of data in order to discover
meaningful, previously unknown, non-trivial, and potentially useful
knowledge (patterns, relationships, trends, rules, anomalies, dependencies)
[Witten & Frank, 2000; Berry & Linoff, 1997]. Data mining is a continuous
and iterative process. It involves the use of software, sound methodology,
and human creativity to achieve new insight through the exploration of data.
The goal of data mining is to allow the end-user (e.g., scientist, engineer,
physician) to improve his or her decision-making. Compared with classical
statistical approaches, data mining is perhaps best seen as a process that
encompasses a wider range of integrated methodologies and tools including
databases, network technology, modeling, algorithms, statistics, machine
learning, knowledge-based techniques, uncertainty handling, and
visualization.

Figure 1. The data mining process.



4 Methods of Microarray Data Analysis

The data mining process and some of its main elements and processes
are depicted in Figure 1. In the diagram, processes are portrayed as ovals and
rounded boxes.

The left side of the diagram illustrates the data access and data pre-
processing or representation part of the overall process. This phase
transforms the original data (from one or more sources) into an intermediate
format. This process may be straightforward or arbitrarily complex,
especially when complex background knowledge needs to be incorporated.
Currently, it is being discussed if this process can be systematized by means
of data warehousing methodology and technology [Dubitzky et al., 2001]. A
major obstacle towards this goal is the complexity (logical/structural and
temporal) and the global proliferation of the formal background knowledge
in biology and life science.

The right part in Figure 1 shows the so-called knowledge discovery
process. In this process, the pre-processed data is analyzed using a suitable
pattern analysis methods. Which method is most suited for the problem at
hand depends on the underlying domain, the question being asked, the
structure of the available data, and the data mining task that is to be
performed. Typical data mining tasks include discriminant analysis,
estimation/regression, clustering, association analysis [Hipp et al., 2000],
and deviation detection [Arning et al., 1996]. Two of the most common data
mining tasks, namely discriminant analysis and clustering, are briefly
discussed below. Most of the discussion below is presented from the
perspective of discriminant analysis.

Both discriminant analysis and cluster analysis are often referred to as
classification. However, cluster analysis is quite different from discriminant
analysis in that it actually establishes groups (i.e., classes) of objects or
entities, whereas discriminant analysis assigns objects to groups that were
defined in advance. Clustering seeks a convenient and valid organization
(and description) of data and not the generation of rules for separating future
data into categories. Thus, cluster analysis is often used when a set of cases
or observations is to be divided into "natural" groups. More specifically,
clustering is a process or task that is concerned with establishing classes or
groups from a set of observations, and with the definition or description of
the classes that are identified. Because of this added requirement and
complexity, clustering is considered a higher-level process than discriminant
analysis. General definitions of both discriminant analysis (also called
classification) and clustering (sometimes referred to as automatic
classification or partitioning) are provided in Definition 1 and Definition 2
respectively.



Dubitzky et al. 5

Definition 1. Discriminant analysis: Given a universe, U, the subsets
(predefined classes) C1, C2, ..., Cn ⊂ U, and the indices 1, 2, ..., i, ..., n ∈ I,
then a classifier is a function, f(x): U → I, such that f(x) = i implies x ∈ Ci

(that is that x is a member of class Ci).

Discriminant analysis is often used to verify or disprove preconceived
notions and ideas concerning the relationships in the data (hypothesis
testing), or to explain or categorize a certain attribute or property, e.g., tumor
type, of the analyzed observations.

Definition 2. Cluster analysis: Given a set X with n objects X = {x1, x2,
..., xn} with each object, xi, i = 1 ... n, described by m attributes, xi = (xi1, xi2,
..., xim), determine a classification (grouping, clustering) that is most likely to
have generated the observed objects. [Upal & Neufeld, 1996]

A frequently applied approach to clustering attempts to produce classes
or groups that maximize similarity within classes but minimize similarity
between classes. In the context of microarray data analysis, clustering
methods may be useful for automatically detecting new subgroups
(hypothesis generation) of clinical or biological entities (e.g., tumors, genetic
risk groups) in the data [Granzow et al., 2001].

Data mining and data warehousing were first applied on a large scale in
so-called customer-oriented businesses including the financial, marketing,
retailing, and transportation sector. Typically, in these applications the
number of variables is less than 100 and the number of observations ranges
from several thousands to several millions. This situation is quite different
for microarray data where the number of observations is often very small
relative to the number of variables by a factor 10 to 100 or more. Because of
this discrepancy it is mandatory to perform cross-validation procedures in
order to obtain statistically reliable estimates for the performance of the
derived models.

CROSS-VALIDATION

In the presence of a large number of observations, cross-validation
procedures take up to 90% of the data to construct a discriminant model and
estimate the model's future performance by validating it against the
remaining observations. The data set for construction of the model is usually
called the training set, and that for validation is referred to as the validation
set. Given a large number of cases, this procedure yields a statistically sound
estimate for gauging the expected performance of the model. However,



6 Methods of Microarray Data Analysis

when there is only a limited number of observations, this procedure is not
very effective, as (1) the two data sets may be overly biased, and (2) not all
available data is used for training.

For example, given a two class problem with a total of 100 observations
and the absolute class frequencies of F(A) = 80, for class A, and F(B) = 20,
for class B, a randomly sampled training set of size 75 may contain no
instance of class B at all. Thus, the construction of a good model from this
strongly "biased" training set will be difficult. Also, in this example, 25% of
the available data is not used for model construction.

A way to avoid these problems is n-fold cross-validation. Generally, n-
fold cross-validation divides the available data set into n folds or subsets.
Based on these n data sets, n different models are developed, each using n-1
data sets for training and the remaining data set for validation. The
advantage of cross-validation is that it increases the number of data patterns
available for training, while using every data pattern available for testing.
The diagram in Figure 2 depicts the general approach to cross-validation. In
the diagram, the index c = 1, 2, ..., i, ..., n-1, n, refers to the cross-validation
fold, and fi(x) denotes the model resulting from the ith cross-validation
iteration or fold. For each cross-validation fold, the sets S1 to Sn form a
mathematical partition of the original data set.

Figure 2. General model for cross-validation.

Once all n cross-validation iterations have been performed, one can
estimate the future performance of the general approach by averaging the
performances of the n models on the corresponding validation sets. From



Dubitzky et al. 7

there one may proceed by either selecting the best-performing individual
model or by constructing the final model using all the available data.

It is important to understand that in the standard cross-validation
procedure repeated uniform sampling without replacement is performed.
Here, uniform means that each "current" case in the original data set has the
same probability of being drawn, and without replacement refers to the fact
that once a case is assigned a set (training or validation set) it cannot be
assigned or drawn into another set within the same cross-validation fold.

MULTI-MODEL APPROACHES

The instability of a prediction method refers to the sensitivity of the final
model to small changes in the training set with regard to the prediction
accuracy of the model. Small changes in the learning set may lead to large
changes in the prediction performance. Typical unstable machine learning
methods are decision trees, while, for example, k-nearest neighbor and
neural models belong to the class of stable methods. An approach to address
the instability problem is to construct multiple models and combine them to
make up the final model. There exist three commonly used methods for
constructing multi-model systems: boosting, bagging, and stacking [Ng,
1996]. These could be viewed as representatives of a more general
framework called data and information fusion [Azuaje et al., 1999].
Boosting, bagging, and stacking deal with creating and combining multiple
classifiers but differ in how the classifiers are trained and in how their
outputs are combined. Such models often improve accuracy by focusing the
learning process on examples in the data that are harder to model than
others. We have applied the C5.0 decision algorithm using its boosting
option to analyze microarray data in [Dubitzky et al., 2000]. In the following
we briefly describe the basic concepts of boosting.

Boosting is an algorithm that creates several different models and
combines their predictions using a weighted voting scheme (e.g., plurality
voting). The elements of a boosting setup and their relationships are depicted
in Figure 3. In boosting procedure, N different (perturbed) training set
replicas are sampled adaptively (with non-uniform sampling probabilities
and with replacement) from the learning set (black box in Figure 3). The
predictions of the combined model are generated by means of a weighted
voting scheme, where each individual prediction model carries a different
weight.



8 Methods of Microarray Data Analysis

Figure 3. Boosting (thick arrow = uniform sampling, without replacement; double arrow =
non-uniform sampling with replacement using sampling probabilities depicted by pi).

The adaptive sampling procedures increase the probability of an instance
to be sampled based on the performance of the classifier in the previous
iteration. Instances that were most often misclassified are assigned an
increased probability for being sampled in the next round. The general
algorithm for boosting is governed by the following scheme (which is also
illustrated in the diagram in Figure 3):

Step 1: Use current (index i) sampling probabilities, pi, and sample with
replacement k instances from the learning set (black box labeled
Test in the diagram).

Step 2: Build current classifier, f'i (x), based on the current training set.
Step 3: Establish current classifier's performance by testing it against the

learning set (black box) and keep a record of correctly/incorrectly
classified cases, and

Step 4: Update the sampling probabilities (feedback arrow in upper part
of diagram) for each instance based on the classifier's performance
and calculate a weight for the classifier also based on its
performance (illustrated by the small box in the lower part of the
diagram).

Step 5: Stop if number of classifiers is reached, otherwise go to Step 1.



Dubitzky et al. 9

In a microarray analysis comprising a total of 72 samples (learning set
27 ALL, 11 AML; and test set of 20 ALL 14 AML) and the expression
levels of 7,070 genes, we showed that the C5.0 decision tree algorithm with
boosting (10-fold and 20-fold boosting) was superior to the non-boosting
version [Dubitzky et al., 2000]. Over a 6-fold cross-validation procedure the
non-boosting experiment achieved an average classification accuracy of
84.09%, with 10-fold boosting 91.87%, and with 20-fold boosting 92.98%.

Decision Trees

Figure 4. Example of simple decision tree after learning.

So-called non-parametric models rely heavily on the empirical analysis
of large data sets rather than on prior domain knowledge, i.e., domain-
specific knowledge about the input-output relationship of the underlying
system or problem. The fundamental assumption of non-parametric models
is that the consistently observed relationships or patterns in large data sets
will recur in future observations. This assumption is crucial as the model
attempts to form or learn generalizations based on the presented data. The
advantage of non-parametric models is that (1) they do not require a
thorough understanding of the underlying system or problem, and (2) they
can be used to build arbitrarily complex models, that are highly non-linear
and not restricted by human comprehension. Typical non-parametric
approaches include decision trees, neural networks, genetic algorithms, and
nearest neighbor methods.



10 Methods of Microarray Data Analysis

A decision tree is an approach for generating models that are both
descriptive and predictive. The term decision tree is derived from the
presentation of the resulting model as a tree-structure (Figure 4 illustrates a
very simple decision tree).

The example illustrated in Figure 4 shows data (six observations in total:
3 high credit risk, and 3 low credit risk) from a credit risk study involving
factors like marital status (Married) and annual earnings (Income), and a
decision variable (CreditRisk). The root node at the top of the tree represents
all observations. Each intermediate and leaf node contains information about
the number of cases at that node and the distribution of the independent
variable. Leaf nodes give the classification that applies to all instances that
reach the leaf (leaf nodes may not be “pure”). Nodes in a decision tree
involve a decision or test about the attributes or variables that reach the
node. Typically, this decision is a statistical test on how well an attribute
alone classifies the training samples. During training the best attribute is
selected and used at this node to evaluate future samples. Also, a descendant
of the node is created for each possible value of the selected attribute (in
case of discrete variables), unless the node is a leaf node. Continuous
variables are first categorized into ranges before branching off a subnode.
For example, at the root node in Figure 4 the attribute Income was found to
be the best, and the statistical test determined that a split at 30,000
partitioned the underlying cases most effectively. Before we turn to a typical
statistical test used to select attributes and generate splits (i.e., create
subnodes), we briefly outline the general algorithm used for constructing
decision trees.

Decision tree learning follows a kind of top-down, divide-and-conquer
strategy. The basic algorithm for decision tree learning can be described as
follows:

1. Select (based on some measure of "purity" such as entropy,
information gain, or diversity) an attribute to place at the root of the
tree and branch for each possible value of the tree. This splits up the
underlying case set into subsets, one for every value of the
considered attribute.

2. Recursively repeat this process for each branch, using only those
cases that actually reach that branch. If at any time all instances at a
node have the same classification, stop developing that part of the
tree.

Typical statistical measures used in decision tree algorithms to select an
attribute include information gain measures (as implemented in the C5.0
algorithm), and diversity measures (as implemented in the CART algorithm)



Dubitzky et al. 11

[Mitchell, 1997; Breiman et al., 1984]. Here, we illustrate the information
gain measure. To define information gain, we first begin by defining another
measure, called entropy, that characterizes the (im)purity of a collection of
observations.

Definition 3. Given a set of predefined classes, C =  {c1, c2, ..., cn}, and
the indices 1, 2, ..., i, ..., n ∈ I, and the (training) set X with m observations,
X = {x1, x2, ..., xm}, with each object, xj ∈ X, described by k attributes and
one class cj ∈ C, such that xj = (x1j, x2j, ..., xkj, cj). Then the entropy,
entropy(X), of the set X relative to this n-wise classification is defined as

i

n

i
i ppXentropy 2

0

log)( ∑
=

−= [1]

where pi is the proportion of X belonging to class ci ∈ C.

The measure called information gain, gain(X,A), is simply the expected
reduction in entropy caused by partitioning the set of observations, X, based
on an attribute A (see equation [2]).

∑
∈

−=
)(

)()(),(
Avaluesv

v
v Xentropy

X

X
XentropyAXgain [2]

where values(A) is the set of all possible (discrete) values of attribute A,
and Xv is the subset of X for which attribute A has the attribute value v, i.e.,
Xv = {x ∈ X | A(x) = v}.

The strengths of decision trees are:

1. the ability to generate understandable knowledge structures, i.e.,
hierarchical trees or sets of rules;

2. a low computational cost when the model is being applied to predict
or classify new cases;

3. the ability to handle symbolic and numeric input variables; and
4. provision of a clear indication of which attributes are most important

for prediction or classification.



12

The weaknesses of decision trees include:

1. a limited ability to handle estimation or regression tasks where the
goal is to predict the value of a continuous variable;

2. error-prone when the number of training examples per class is small;
3. a moderate to high computational cost for growing a decision tree;
4. decision trees generate rectangular classification boxes that may not

correspond well with the actual distribution of the underlying regions
in the decision space; and

5. without further transformation of the input data, decision trees are not
very suitable for learning tasks involving sequential data such as time
series.

Nowadays there is a plethora of decision tree algorithms available. Two
of the most popular and widely used decision tree algorithms are the C5.0
(or its precursor C4.5) [Quinlan & Quinlan, 1997] and CART [Breiman et
al., 1984]. Being very similar in many respects, the main differences of these
two decision tree algorithms are:

1. The criteria they use to select the candidate attribute for splitting. As
mentioned before, C5.0 uses a measure of information gain and
CART uses a measure of diversity.

2. The way they split the tree at each node. This is perhaps the most
important difference. C5.0 produces trees with varying numbers of
branches per node, whereas the CART algorithm performs a binary
split at each node and therefore always constructs a binary tree.

3. The pruning method for reducing the complexity of the constructed
tree. Generally, CART makes reference to unseen data in order to
prune the tree, whereas C5.0 does not consult data beyond the
training set.

To decide which of the two decision trees to use depends on the
underlying task and data. Clearly, an insistence on binary splits (as it is the
case with CART), on a variable that is inherently more various, leads to
unnecessary complexity in the generated tree. High branching factors
(generated by C5.0), on the other hand, lead to a quick reduction of the
population of training observations available at each node at lower levels in
the tree. This makes further splits less reliable.



Dubitzky et al. 13

Neural Networks

Artificial neural networks are an emerging computational technology
which can significantly enhance a number of applications ranging from
robust pattern detection over signal filtering and compression to adaptive
control and optimisation tasks.  The key properties of neural networks can be
summarized as follows:

§ adaptive learning: An ability to learn how to do tasks based on the data
given for training;

§ self-organization: During learning a neural network can create its own
organization or representation of the information it receives;

§ fault tolerance: Noisy data or a partial destruction of the network leads
to the corresponding degradation, however, some of the network’s
capabilities may be retrained even with major damage; and

§ real-time operation: Neural network computations may be carried out in
parallel, and special hardware is being developed which take advantage
of this capability.

The major strengths of neural networks include:

1. ability to handle a range of problem tasks including classification
(discrete outputs) and estimation or regression tasks (continuous
outputs);

2. ability to handle many interacting variables (e.g., images) and non-
linear (input-output) behavior of the underlying phenomena;

3. ability to handle symbolic and numeric input variables;
4. provision of an indication (through sensitivity analysis) of which

attributes are most important for prediction or classification; and
5. low to moderate computational cost when the model is being applied

to predict or classify new cases.

The weaknesses of neural networks are:

1. the learned models are described by patterns of connectivity strengths,
therefore the rules learned by neural networks cannot be made explicit
in symbolic form (the net is the rule); in applications where mere
prediction/classification performance is not the only criterion this may
be a severe problem;

2. the need to preprocess the inputs in the range of [-1,1] or [0,1] (this is
automatically done by most tools);



14 Methods of Microarray Data Analysis

3. the risk of premature convergence to an inferior solution (this is
normally addressed by performing a sensible cross-validation
procedure);

4. depending on the chosen topology and the learning algorithm, there
may be moderate to high computational costs involved in the learning
process; and

5. difficulty of defining/finding the optimal network topology for a
given task.

Artificial neural networks consist of basic units, called processing
elements or neurons, that are modeled on biological neurons. Each
processing element has many inputs that it combines into a single output.
The learning capability of a neural network is defined by the processing
function (called activation function) of the processing elements and the way
these elements are connected together, i.e., the network’s architecture or
topology. Once a network has been trained, the learned knowledge is
represented (stored) in the network by the weights connecting the processing
elements.

Figure 5. Neural network elements: (a) topological structure, (b) neurone and activation.

Figure 5 illustrates a simple neural network and its elements. Usually, a
network of this type has m output processing elements, PE1, …, PEm, each of
which receives n + 1 inputs, namely, in0, in1, in2, …, inj, …, inn from the
corresponding input processing elements; in0 is a special input called bias
input, it is always set to 1 (for the net in Figure 5-a: m = 2, n = 3). The bias



Dubitzky et al. 15

input, in0, together with the corresponding weights w0i, …, w0m represent
thresholds used to control the behavior of the processing elements PE1, …,
PEm.  The vector C = (in1, in2, …, inj, …, inn) represents an actual case that
is to be processed.  Each input of a processing element is associated with a
set of weights.  For example, processing element PE1 is associated with the
weights w01, w11, …, wj1 …, wn1.

The activation function of each processing element or neurone consists of
a combination function and a transfer function (see Figure 5-b). The
combination function merges all inputs, and their weights, into a single
value. The most common combination function is the weighted sum which is
given by equation [3] below. The second part of the activation function is the
transfer function. It transfers the output value of the combination function to
the output of the processing element. Commonly used transfer functions are
the linear, hyperbolic tangent, and sigmoid function; the sigmoid function is
defined by equation [4].

j

n

j
jii inwx ∑

=
=

0

),( WI [3]

)],(exp[1

1
)],([

WI
WI

i
ii x

xout
−+

= [4]

In equation [4] (transfer function) the term outi[x(I,W)] denotes the
output of the processing element PEi. The transfer function of the processing
element PEi determines the element’s output, outi[x(I,W)], based on its input
values I = (in0, in1, in2, …, inj, …, inn) and the corresponding weights, W =
(w0i, w1i, w2i, …, wji, …, wni), via the combination function xi(I,W) (see
equation [3]). The indices 1, 2, …, j, …, n indicate the processing elements
or inputs that are connected to PEi. The special bias input, in0, is always
fixed to +1, and together with the weight w0i it is used to represent a
threshold. Learning in a neural network is the process of setting (adapting)
the best weights on the inputs of each processing element. The goal is to
produce weights where the output of the network is as close to the desired
output as possible for as many examples in the training set as possible. The
most common algorithm for doing this is the (error) backpropagation
algorithm [Dayhoff, 1996]. The standard implementation of this algorithm
proceeds as follows:

1. The network is presented with a training sample or case, defined by
the pair (C,class label), and, based on the existing weights, calculates
and predicts the outputs (e.g., classification) for the case in question.



16 Methods of Microarray Data Analysis

2. The backpropagation algorithm then determines the error by taking
the difference between the calculated outputs and the expected
outputs (as provided by a teacher).

3. The error is then fed back through the network and the weights are
adjusted (according to some scheme) to minimize the error.

4. Learning normally proceeds until a certain termination criterion is
reached. A typical criterion is the prediction accuracy threshold,
which is often specified somewhere between 80% and 90%. If too
low a value is chosen, the network may not be able to generalize
well, so the expected performance on unseen test data will be low.
Too high a value entices the net into memorizing or overfitting the
training data. As a consequence the net will not perform well on
unseen test data since it has failed to generalize from the training
data.

Despite the high number of variables (ca. 7,000 genes) and the low
number of observations (n=72), we demonstrated that the standard
backpropagation algorithm is a useful tool for analyzing microarray data
[Dubitzky et al., 2000]. We carried out three experiments with learning
accuracy thresholds of 80%, 85%, and 90% respectively over a 6-fold cross-
validation process. The average classification performances were as follows:
93.94%, 94.63%, and 89.70% respectively. Clearly, the decreased
performance with the learning threshold of 90% is due to the well-known
overfitting effect.

SUMMARY AND CONCLUSION

We presented an overview of two widely used machine learning
algorithms and two complementary techniques (cross-validation and multi-
model approaches) that have been demonstrated to be useful for microarray
analysis. The major advantage of these techniques is that they can be readily
applied to explore microarray data. In a recent study [Dubitzky et al., 2000]
we showed that decision trees (C5.0 implementation with 20-fold boosting)
outperformed neural networks (standard backpropagation algorithm). The
added advantage of decision trees is that their results can be directly
inspected by humans. This may potentially lead to a deeper understanding of
the mechanisms governing the underlying biological entities and process.
With standard neural networks this option is not readily available. Perhaps
one of the most important drawbacks of the presented methods is that they
do not readily lend themselves to single-event probabilities or statistical



Dubitzky et al. 17

confidence intervals in connection with their predictions. Clearly, much
more analysis, experiments, and statistical and biological validation is
necessary to establish a comprehensive set of properties on data mining and
machine learning approaches to microarray analysis.

References
Arning, A., Agrawal, R., Raghavan, P., "A linear method for deviation detection in large

databases", Proc. 2nd Int'l Conference on Knowledge Discovery and Data Mining,
pp164-169, 1996.

Berry, M.J.A. and Linoff, G., "Data Mining Techniques: For Marketing, Sales, and Customer
Support", John Wiley & Sons, 1997.

Breiman, L., Friedman, J.H., Olshen, R.A., Stone, C.J., "Classification and Regression
Trees", Wadsworth, Monterey, CA, 1984.

Chen J.J., Wu R., Yang P.C., Huang J.Y., Sher Y.P., Han M.H., Kao W.C., Lee P.J., Chiu
T.F., Chang F., Chu Y.W., Wu C.W., Peck K., "Profiling expression patterns and
isolating differentially expressed genes by cDNA microarray system with colorimetry
detection", Genomics, 1;51(3), pp313-24, 1998.

Dayhoff, J.E., “Neural Network Architectures: An Introduction”, Thomson Computer Press,
1996.

Dubitzky, W., Granzow, M., Berrar, D., Bulashevska, S.,  Conrad, C., Gerlich, D., Eils, R.,
"A Comparison of Symbolic and Subsymbolic Machine Learning Approaches to
Molecular Classification of Cancer and Gene Identification", in Critical Assessment of
Techniques for Microarray Data Mining (CAMDA-2000), pp12-13, 2000. (extended
abstract)

Dubitzky, W., Krebs, O., Eils, R., "Minding, OLAPing, and Mining Biological Data:
Towards a Data Warehousing Concept in Biology", Proc. Network Tools and
Applications in Biology (NETTAB), CORBA and XML: Towards a Bioinformatics
Integrated Network Environment, pp78-82, Genoa, Italy, 2001.

Golub T.R., Slonim D.K., Tamayo P., Huard C., Gaasenbeek M., Mesirov J.P., Coller H.,
Loh M.L., Downing J.R., Caligiuri M.A., Bloomfield C.D., Lander E.S., "Molecular
classification of cancer: class discovery and class prediction by gene expression
monitoring", Science 286(5439) pp531-537, 1999.

Granzow M., Berrar D., Dubitzky W., Schuster A., Azuaje F. and Eils R., "Tumor
Classification by Gene Expression Profiling: Comparison and Validation of Five
Clustering Methods ", in ACM-SIGBIO Letters, 2001. (in press)

Hipp J., Güntzer U., Nakhaeizadeh G., Algorithms for Association Rule Mining: A General
Survey and Comparison, SIGKDD Explorations, 2(1), pp58-64, 2000.

Mitchell, T.M., "Machine Learning", McGraw-Hill, Singapore, 1997.
Newton M.A., Kendziorski C.M., Richmond C.S., Blattner F.R., Tsui K.W., "On differential

variability of expression ratios: improving statistical inference about gene expression
changes from microarray data", J Comput Biol., 8(1), pp37-52, 2001

Ng, K., "An experimental comparison of stacking, bagging, boosting for combining
ensembles of radial basis function classifiers", Term Project 9.520, Spoken Language
Systems Group, Laboratory for Computer Science, Massachusetts Institute of
Technology, 1996.

Quinlan, J.R. and Quinlan, R., "C4.5: Programs for Machine Learning", Morgan Kaufmann
Series in Machine Learning, 1997.

Upal, M.A. and Neufeld, E., "Comparison of unsupervised classifiers", in Proc. of the First



18 Methods of Microarray Data Analysis

International Conference on Information, Statistics and Induction in Science, pp342-353,
World Scientific, Singapore, 1996.

Voit E.O. & Radivoyevitch T., "Biochemical systems analysis of genome-wide expression
data", Bioinformatics, 16(11), pp1023-37, 2000.

Witten, I.H. and Frank, E., "Data Mining: Practical Machine Learning Tools and Techniques
with Java Implementations", Morgan Kaufmann Pub., 2000.


